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Introduction

As technology in computational fluid dynamics (CFD) matures, the complexity of

problems being solved by this technology has soared. To become a useful tool for modern

day engineers, numerical algorithms capable of handling complex flows about complicated

geometries are essential. It is the lack of generality in treating complex geometries which

has prevented the routine use of CFD in everyday engineering. In fact, a NASA sponsored

workshop ("Future Directions in Surface Modeling and Grid Generation", Dec. 5-7,1989)

was held at NASA Ames to address this problem. When a panel of grid generation experts

from universities and research laboratories around the U.S. were asked to evaluate which

grid technology or technologies (overset grids, patched grids, unstructured grids) would

survive several years into the future, the unanimous consensus was that unstructured

meshes would be the only surviving technology. Whether or not this is true, today many

aspects of unstructured grids and flow solvers are still relatively unexplored and much work

needs to be done.

The intent of these notes is to highlight fundamental and state-of-the-art technology

in unstructured grids and flow solvers. Roughly half of the notes (sections 1 and 2) discuss

algorithms and techniques pertinent to mesh generation. The first section (pages 1-11) on

multi-dimensional searching was provided by Marshal Merriam (NASA Ames). This was

included because of the fundamental importance of good searching algorithms; especially in

mesh generation. As we will see in section 2, many grid generation and grid manipulation

schemes rely on fast multi-dimensional searching. In fact, work estimates for many grid

generation algorithms casually assume optimal multi-dimensional searching algorithms. In

two dimensions, this subject is rather well developed and a few fundamental algorithms

are discussed. The other half of the notes (section 3) discuss flow solver technology. In this

case, we specialize the discussion to flow solution techniques for the Euler equations which

can be derived from the integral form of the equations. Several different algorithms will be

discussed ranging from the finite volume equivalent of the Galerkin finite element method

to the more sophisticated upwind algorithms. Using some very simple analysis techniques,

we can investigate basic properties of these schemes. We will find that this analysis provides

strong motivation for use of Delaunay triangulation. A few sample calculations are shown

along the way to demonstrate the methods. Hopefully, these notes will convince readers

that the world of unstructured grids contains a great deal of structure.



1.0 Multi-dimensional Searching Algorithms

There is a searching problem that comes up quite often in unstructured grid work.

Given a large number of nodes whose locations are known, and an arbitrary point P, find

the node which is closest to P. In real life, this problem comes up quite often. For example,

when we ask for the location of the nearest public phone (gas station, bathroom, etc.) we

are asking for a solution to this problem. The solution to the computational problem draws
heavily on insights drawn from the real life problem.

This section reviews a number of the standard techniques for this problem. All of

them are viewed as special cases of a fairly general technique. A few theoretical results

will also be shown to illustrate which of these techniques may be preferred and why.

1.1 Exhaustive search

By far the simplest technique, in every sense, is exhaustive search. It consists of finding

the distance (or the distance squared) between the point P and each node Qi and then

finding the smallest of these distances. So, how much does this cost? The computation of

distance between P and Qi is not expensive. Usually the following formula is used.

D(P, Qi) = (xv - zi) 2 + (yv - yi) 2

If there are N nodes, the cost of finding all the distances is roughly 5N operations. For

Delaunay triangulation this closest node algorithm needs to be exercised about three times

for each node. The total cost of triangulation is proportional to the square of the number
of nodes. Generally this O(N 2) cost is prohibitive.

Not surprisingly, this isn't the algorithm we use when deciding where the nearest

phone is. Just to list the locations of every telephone in the country would be very difficult

and somewhat unnecessary. Usually it is more than enough to know where all the phones

in the city are. This approach, sorting the telephones geographically, is the basis for all
tree searches.

1.2 Bucket search

Since Delaunay triangulation requires many invocations of the closest node algorithm

from widely scattered points, it is usually worthwhile to presort the nodes in some way.

Perhaps the simplest arrangement starts by partitioning the entire domain into a two

dimensional array of rectangular regions called buckets. These are all the same size. The

list of nodes can be sorted in such a way that all the nodes in a particular bucket are

contiguous. The index of the first and last node of each bucket can be kept in a two
dimensional array for later reference.

The original problem was to find out which node is closest to P. It is easy to find out

the indices of the bucket in which P appears. For example, if there are M buckets in each

direction, point P appears in bucket (j,k) where

M(xv - z,ni,_) M(yv - ymi,_ )
J = k =- -

Searching this bucket exhaustively is easy, the nodes contained in it are stored con-

tiguously between known indexes. The closest node to P may, or may not, be contained in
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Figure 1.0. Bucket search. First look for the closest node in the same bucket as point P.

Then search the buckets touched by the square•

the same bucket as P. In fact, there may be no nodes in the same bucket as P. Therefore

other buckets may have to be searched• Which ones?

Computation of the distance from P to the bucket Bjk costs about the same as

computing the distance to a node. If there are node,_ known to be closer than bucket Bj_,

there is no need to search that bucket• It certainly does not contain any closer nodes. In

fact, only a few buckets are even candidates. In the example shown in Fig. 1.0, the bucket

containing P has been searched exhaustively. A circle centered at P is drawn through the

closest known node. This circle typically covers only a few buckets (six, in this example),

sometimes only the bucket in which P appears. In practice, a bounding square of the same

radius is easier to use, since truncation can be used to decide the limits for j and k.

So how much does this cost. The original setup is accomplished in two passes, one to

count how many nodes are in each bucket, and one to copy the nodes into the appropriate

bucket in a duplicate array. The cost is proportional to O(M 2) + O(N) and needs to

be done only once for a given set of nodes. The cost of searching the bucket in which P

appears is proportional to the number of nodes in theft bucket. This is highly dependent on
the distribution of nodes and the number of buckets. In the best case, the nodes are evenly

distributed, there are N buckets and each bucket contains one node. At most 12 buckets

need to be searched in this case, so the cost of each invocation of the closest node algorithm

is independent of the number of nodes O(1). A worst case occurs when almost all of the

points appear in a single bucket. This generally leads to a lot of looking through empty

buckets and a very expensive exhaustive search if the node ultimately lies in the loaded

bucket• In this case the bucket search can cost O(N) on each invocation. In practice

the situation is usually closer to the worst case. In one example, an airfoil had about

6000 nodes split into 900 buckets. It turned out that 2500 nodes fell in a single bucket

(located at the traihng edge)• Decreasing the numbe:: of buckets made it more expensive to
search the loaded bucket. Increasing the number of buckets also slowed things down, due

to the problem of searching empty buckets• Nevertheless, a bucket search is a dramatic



improvement over an exhanstive search, both in theory and in practice.

This Mgorithm is somewhat akin to sorting telephones according to their grid coordi-

nates on a city map. The problem is the constant size of the coordinate squares. A size

that is appropriate in an urban area (100 meters say) may be totally inappropriate in a

wilderness area. What is needed is a way to size the buckets according to the local node

(telephone) density. The quadtree approach is commonly used for this purpose.

1.3 Quadtree search

The quadtree search [1] can be considered as a sort of adaptive bucket search. Many

of the features found in the bucket search can be found in the quadtree search also. These

include the partitioning of the search space into buckets (called quadrants here), sorting the

nodes by quadrant, computation of distance from P to each quadrant to avoid searching

them all, and the exhaustive search of certain buckets.

In terms of the telephone analogy, one would look at a list of telephones in the local

town. Then, if the town line was close by, one might search nearby towns in the same

county. If the county line was nearby, one might search nearby towns in other nearby

counties in the same state and so forth to any desired depth. Usually, though, the town

line is farther away than the nearest phone in town, so no further looking is necessary.

The setup phase of a quadtree begins exactly like a two by two bucket search. The

nodes are sorted in such a way that the nodes in each quadrant are contiguous and the

starting and ending indices are stored away for future reference. If the number of nodes in

each quadrant is small enough (usually something like 32 nodes), then exhaustive search

is practical and quadtree and bucket searches are identical. In most cases there are a lot

more nodes than this, so exhaustive search is impractical. A two by two bucket search

of each quadrant is then offered as an alternative. Loaded quadrants are divided into

sub-quadrants, with a further sort to ensure that nodes within each sub-quadrant are

contiguous (as well as nodes within each quadrant).

A sufficient list of things for each quadrant to know is

i. where it is (z,,,_,y,_i,_)

ii. how big it is (Z,na_, Y,_a_)

iii. starting and ending indexes for nodes it contains

iv. where all this information is for any subquadrants it contains

This information, and a reordered list of nodes, is the output of the setup phase.

The lookup phase of a quadtree search is similar to that for a bucket search, but with

one further refinement. The distance from point P to each quadrant D(P, q) is computed,

and these distances are sorted, shortest to longest. The quadrant in which P resides is

the closest and the the one diagonally opposite is the farthest away. The four quadrants

are searched in this order, and the search is terminated when the next quadrant is farther

away than the closest known node. The search of each quadrant is accomplished through

exhaustive search, or if the quadrant has too many nodes, through a bucket search.

The example in Fig. 1.1 shows this process graphically. The point P is found in the

lower left subquadrant of the upper right quadrant. A search of the subquadrant reveals

a node close enough to limit the search to the upper right quadrant. The lower right

subquadrant is searched next because it is closer than either of the other two subquadrants.

A search of this subquadrant reveals a closer node. The reduced distance further limits
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Figure 1.1. Quadtree search. First look for the closest node in the same quadrant as

point P. Then search the quadrants touched by the square in order of distance from point

P. In this case, the secon(| quadrant searched contains a closer node that shrinks the square
and terminates the search.

the search area to that shown by the dotted line. Since all the subquadrants contained in

the dotted region have been searched, there is no closer node and the search terminates.

How much does all this cost? In rough terms probably a lot less than the bucket

search. A precise answer depends a lot on the nod, _. distribution. In the best case, each

quadrant at the bottom level is the same size and exactly full (unlike Fig. 1.1). Thus there
are N/nmin quadrants oll the bottom level, where nmin is the threshold value. The next

1 4 N/nmin buckets. The number of levelslevel up has _ as many, leading to an estimate of 5

1 log s N. Sorting is required on each level. The total preprocessing costwill be log 4 N or 5

is proportional to N log s N.

1 log 2 N subdivisions,The search in this rosy world consists of sear,:hing through

I log s N levels. Thesearching one quadrant at the bottom, and pruning back through i

best case has a cost proportional to the number of levels, or O(log 2 N). This is worse than
the best case for the bucket sort.

The worst case is quite similar to the worst cas.'_ for the bucket sort. It occurs when

one point appears in (say) the upper left corner and all the others are tightly clustered in

the lower right corner of i,he domain. This results iJl lots of empty quadrants, but fewer

than for the bucket search. Instead of the costly exhaustive search needed by the bucket

search, the quadtree search needs many levels to get down to where the action is. Although

the cost of traversing a lew_l is small, there is no limit to the number of levels that might
be required. The worst case cost for a pure quadtrec search is unbounded! With both the

best and worst cases looking inferior to the bucket search, one might expect this algorithm

to be in disfavor. There are two reasons why this is_l't so. First, the number of levels is

usually limited arbitrarily. This keeps the worst case cost from being unbounded. Second,

the worst case hardly ever happens. For example, the 6128 node case listed above required
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Figure 1.2. Worst case for quadtree search. In principle the number of levels for the tree
is unbounded.

653 quadrants on 12 levels. A best case would indicate 256 quadrants on 5 levels. While far

from a best case, the quadtree search in this example was substantially less expensive that

a bucket search. On an IRIS 4D workstation the running time dropped from 2 minutes to

22 seconds. It is often conjectured that the "average" cost for triangulation is O(N log N)

or even O(N). The later claim is experimental and suggests that the tree traversal cost is

negligible (but unbounded!).

1.4 Split Trees

This is a modification to the quadtree approach (quadtree seems to have come first

[2]). It contains a few significant improvements. The most striking difference is that

the domain is divided into two parts instead of four at each step. The division occurs

alternately along lines of constant z and constant y. For this reason the algorithm can be

described as a binary, alternating direction tree (no, not a BAD tree). Each half can be

searched exhaustively or divided.

Another important difference is that the divisions do not bisect the regions geograph-

ically. Ideally, the division should be such that exactly half the points fall in each of the

two regions. This could be done by sorting the nodes according to z and choosing the

divisor to be the median value of z. Such a choice would always guarantee a best case.

A cheaper and simpler alternative is to find the average value of z. The median and the

mean are related by the variance, but in general the approximation is acceptable.

A sufficient set of things for each half to know is

i. which nodes it contains

ii. which direction to split it in

iii. where it gets split

iv. where all this information is for the subpartitions.

These things are generated in much the same way as in a quadtree and the resulting data
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Figure 1.3. Partitions for a splittree search.

structure has many similarities.

In the lookup phase_ the advantages of the split tree are significant. Finding the

distance to the divisor involves only a single subtraction, which simplifies the computation

of distance to each half. Secondly, sorting the two halves by distance involves only a single

comparison, which cleans up the code quite a bit.

In the setup phase, it is easier to sort into two piles than four, in fact the node

reordering time for each level is cut by a factor of three. On the other hand there may be

up to twice as many level:; as a quadtree approach, which cuts into the savings• The node

reordering time drops by _, significantly more in three dimensions. This saving is illusory

however. A quadtree search could incorporate the _,_ame type of setup, sorting first in z

and then in V. In any evenl, this cost is only a few percent of the total.

The cost of finding the mean is O(N) on each of log N levels for a total cost

O(NlogN). If computation of the median is selected, the cost is O(Nlog 2 N) which

is slightly higher, but promises a best case. In either case, the extra cost reduces the

number of levels significantly. This helps a lot in the lookup phase.

In the lookup phase, ',he time for traversing each level is reduced significantly through

simpler distance calculations and cheaper sorting, offset by having slightly more levels. In

one case, with 7240 nodes, the quadtree used 8 leveh; and 777 quadrants. By contrast tile

split tree (using the meax 0 generated 705 halves on 11 levels. A best case would be 340

halfs on 9 levels. In this example, and in general, the split tree will get closer to a best

case than a quadtree search. On average, the split tree search is slightly faster and more

robust than a quadtree search, other things being equal. The advantage lies in slightly

simpler coding and in getting closer to a best case. Using a split tree search, triangulation

of the 6128 node, three element airfoil case required 11 seconds of CPU time on an IRIS

4D work station. This is less than the time required to read in the nodes and write out

the edges.
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Figure 1.4. AU four algorithms are tree searches. They have different branching factors.

1.5 General Trees

All four of the algorithms described above, and many others, can be viewed as tree

searches, as shown in Fig. 1.4 The exhaustive search is a degenerate tree with only one

level. The bucket search is more of a bush, with two levels and a branching factor of M _-.

The quadtree has a branching factor of 4, the binary tree has a branching factor of 2.

A general tree searching algorithm is defined (recursively) as follows:

procedure treesearch(tree,N,P,D)

if (N < nmin) then

ExhaustiveSearch(tree,N,P,D)
else

Next Closest Branch(P,branch,n,d)

do while (d < D)

treesearch(branch,n,P,D)

Next Closest Branch(P,branch,n,d)
enddo

endif

return

end

The procedure "treesearch" will search through the N nodes in tree and return the

distance D to the node nearest to point P. If there are a small number of nodes, an ex-

haustive search is performed. The procedure "NextClosestBranch" returns the unsearched

branch closest to P, along with the number of nodes it contains (n) and its distance from

P, (d). If there are no unsearched branches, a large value of d is returned, terminating the
search.

Essentially all the work in traversing the tree goes into finding the next closest branch.

The relative cost of NextClosestBranch and ExhaustiveSearch determines the optimum
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value of nmin. This value occurs where the prob_,ble work avoided by searching fewer

nodes equals the probable work of finding the next closest branch a number of times.

The simplest implementation of NextClosestBranch finds the distance to all the

branches at once and sorts these distances. This may be inefficient if the number of

branches is large (e.g., bucket search), since the search will probably terminate long before

all the branches are searched. A lot of unnecessary distances are computed. On the other

hand, this implementation is typical of a quadtree or splittree search.

What is an optimum branching factor? Suppose that the nodes are equally divided

among b branches at each of L levels. This means that there will be n,_i,_N "leaves" which

might have to be exhaustively searched. The operative relation is

N
bL _

The simplest search cons:ists of L calls to NextClosestBranch and an exhaustive search of

nmin nodes. Calls to NextClosestBranch cost O(b) and exhaustive search costs O(nmin)

so the total cost can be expressed as

Cost = otLb +/3nmin

Where a and/3 are implementation dependent constants. Combining this with the previous

expression gives

Cost ab l°g(N/nmin)= +/3nmin
log b

Differentiating with respect to b gives a root at log b = 1 (but what is the base of the log?).

At this value the cost expression is

Cost = c_b log( g/nmin ) +/3nmin

Here it is obvious that b :dlould be as small as possible. Since the log of 1 vanishes in any

base, b = 2 is the best integer value. At this value, 1,he best choice for nmin is

2a
nmir_ --

/3

Which leads to a total cost of

2c_

Cost = 2_(log2N -Io92(_-) + 1)

the leading term of which is independent of/3. Notice that the number of dimensions does

not explicitly appear, though in some cases it might hide in the values of a and /3. In

a split tree search, for which this analysis is valid, the value of a is independent of the

number of dimensions.

The assumptions used in this optimization analysis do not always apply and it may be

possible to do better. For example the bucket search, as described above, did not require

computing the distance from point P to each of M '_ regions. In the best case, one might

expect the cost of finding the next branch to be independent of the number of branches

O(1). In that case, the cost uniformly decreases as the number of branches increases,

provided that the nodes _re evenly divided among the branches.



A general algorithm for setting up a tree search (sorting the nodes) is defined recur-

sively as

procedure treesort (start node,endnode,tree)

n = startnode-endnode + 1

if (n > nmin) then

partition(nodes,startpartition,endpartition)

do for each branch

treesort( start part ition(b),endpartition( b),sub tree)

concatenate(subtree)

enddo

endif

return

end

If the number of nodes is small enough, no further partitioning is required The pro-

cedure "partition" divides the search domain into b separate partitions and reorders the

nodes so that nodes within a partition are contiguous. Each of these are then treesorted.

The procedure "concatenate" accumulates pointers to these subtrees. When all partitions

have been treesorted the procedure terminates, returning pointers to its subtrees or ,if

N < rtmirt, null pointers.

The main cost is in the routine "partition" and has two parts. Dividing the search

domain can be almost free if done geographically as in the quadtree, or it can be costly,

O(N) or O(Nlog N), if an attempt is made to put equal numbers of nodes into each

partition. Reordering the nodes usually costs O(N). Since there are O(log N) levels, the

overall cost is 0(N log N) or 0(N log 2 N).

1.6 Balanced Trees

In the quadtree search, a worst case is shown in Fig. 1.2. This occurs because most

of the divisions put all the nodes in one quadrant. This leads to a cost that (in principle)

is unbounded. How can such a disaster be avoided? In a related question, how can the

best case be (perhaps approximately) realized?

The answer in both cases is tree balancing. The trick is to put roughly the same

number of nodes in each partition. In the case of the binary trees, two balancing tricks

have already been shown. These are the use of the median (exact balance) and the use of

the mean (approximate balance). There are several other techniques available.

In the simplest balancing technique, an arbitrary node is chosen as the divisor. This

technique (used in QUICKSORT for example) at least limits the worst case to slightly

more work than exhaustive search. In the binary tree, only one of its two coordinates

would be used. In the quadtree, it would form the intersection of the four quadrants. The

node itself would (arbitrarily) belong to the first quadrant. It must be noted that the

quadtree is inherently more difficult to balance than a binary tree. For example, it may

not be possible to exactly balance an arbitrary set of nodes among the four branches.

A simple variant chooses a small number of nodes (typically three) and sorts them,

choosing the median as the divisor. This improves the worst case somewhat and makes
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it much less likely to occur. For the quadtree, one might take the x coordinate from the

median x value and the y coordinate from the median y value.

One final techlfique is the histogram (also called radix) sort. This is basically a bucket

sort in one dimension. The range of values is divided into a moderate number (perhaps

100) of subranges. With one pass through the node,., each subrange can know how many

nodes fall in that range and what the extreme values are. This can be used to get an

excellent approximation for the median at a cost proportional to the number of nodes plus

the number of subranges. To realize significant savings over a true sort, the number of

subranges must be smaller than N log N.

One drawback to balancing is an increase in complexity and storage: the divisors

must be saved. Another can be an increase in the time required to compute distance

from P to each partition: truncation can not be used to locate P. Finally, balance is

difficult to maintain if nodes are being added or removed as sometimes required. These

disadvantages must be weighed against the imprownl robustness and the reduced number

of levels that come with a balanced tree. Experience in two dimensions has shown that the

tree setup takes only about 5% of the total triangulation time, even though (in the case of

the splittree) its complexity is formally equivalent to the lookup time. This suggests that

extra time spent balancing the tree may be less than the time saved by a balanced tree.

1.7 Conclusions

Significant improven:tents in operation count are possible if tree searches are used

instead of exhaustive search. A summary of the me_hods discussed here is given in table

1. This list is by no meai_s complete, but gives a flavor for the options available. Each of

the entries has its place. Exhaustive search is best if the number of nodes is fairly small.

Bucket searching is best if the number of nodes is large, but fairly evenly distributed.

Quadtree and splittree searches are best if the nodes are highly clustered. Splittree is

easier to balance than quadtree, and therefore more robust.

Name Best Case Wors'; Case Typical Case

Exhaustive O(N 2) O(N _) O(N _)

Bucket O(N) O(N _) O(N 2)

Quadtree O(N log 2 N) O(cx>', O(N log 2 N)

O(N log 2 N)Splittree O(N log 2 N) O(N log2 N)

Table 1 - Complexity of variols tree searches

A variety of other choices spring immediately to nfind, but the search algorithm no

longer dominates the running time anyway. It is difficult to make general statements about

the triangulation times since they depend so heavily on the data. In Figure 1.5, though,

some experience with vari,)us search methods is summarized. Notice that the bucket search

in particular varied quite a bit depending on the node distribution. At one extreme it was

nearly as fast as the quactree search, at the other it was only twice as fast as exhaustive

search.

In three dimensions it is a different story. Preliminary estimates plax:e the running

time for 3-D triangulation in the neighborhood of :l to 4 Cray CPU hours. For problems
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Figure 1.5 Performance of a triangulation algorithm using various search methods. The

splittree search was the clear winner. Timings are for an IRIS-4D/70G

of this scale, even small percentage improvements are significant. Furthermore, I/O is less

likely to dominate, since it is essentially of O(N) complexity.
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2.0 Mesh Generation Methods

In this section several two-dimensional mesh generation techniques are discussed. Par-

ticular emphasis is placed on the method of Delaur.ay triangulation which has proven to

be a very powerful technique with rich mathematical theory. Other methods which have

become popular in recent years are also discussed. Finally, data dependent meshes and

adaptive meshes are reviewed.

In order to concisely describe various mesh generation and eventually flow algorithms,

we adopt some elementary graph notation. Specifically, we consider a two-dimensional

mesh M of vertices, edges, and cells (faces) denoted by v,e, and, c respectively. For a

given mesh vertex, define the degree of a vertex, d(v), as the number of edges incident

to v. Similarly, define the degree of a cell d(c) as tile number of edges bounding the cell.

Figure 2.1 shows a simple mesh generated from raaldom vertices.

Mesh

Median Dual

Centzoid Dual

Dirichlet Region

Figure 2.1. Simple Planar Mesh. Figure 2.2. Triangulation Duals.

One of the most often used formulas in graph theory precisely relates the number of cells,

edges, and vertices n(c), n(e) and n(v) of a planar simple graph:

n(c) = n(e) - n(v) + 2 Euler's formula (2.0)

The usual convention in graph theory is to number all cells including the "infinite" face

which extends from the outer boundary to infinity in all directions. We can eliminate

the need for an infinite face by describing the outer boundary in terms of boundary edges

which share exactly one cell (interior edges share two). We also consider boundary edges

which form simple closed curves in the interior of the mesh. These curves serve to describe

possible objects embedded in the mesh (in this case, the polygon which they form is not

counted as a cell of the mesh). We denote the number of these embedded "holes" by n(h).

The modified Euler's formula now reads

n(c) + n(v) = n(e) -+- ! -- n(h) (2.1)
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Since interior edges share two cells and boundary edges share one cell, the number of

interior and boundary edges can be simply related to the number of ceils by the following

formula:
,=a_ d(c)

+ = i n(c), (2.2)
i=3

where n(c)i denotes the number of cells of a particular edge degree, d(c) = i. Note that

for pure triangulations T, these formulas can be used to determine, independent of the

triangulation method, the number of triangles or edges given the number of vertices n(v),

boundary edges n(e)bo,,,,d_,._, and holes n(h):

(2.3)

or

n(e) = 3n(v) - n(e)bo,,_,d,,.y -- 3 + 3n(h) (2.4)

This is a well known result for planar triangulations. (For brevity, we will sometimes use

N to denote n(v) in the remainder of these notes.) In many cases boundary edges are

not explicitly given and the boundary is taken to be the convex hull of the vertices. (To

obtain the convex hull in two dimensions, envision placing an elastic rubber band around

the cloud of points. The final shape of this rubber band will be the convex hull.) When

boundary edges are given, the triangulation is termed a constrained triangulation. Of great

importance is the observation that the number of cells and edges is linearly proportional to

the number of vertices. This gives a great deal of flexibility in choosing a particular data

structure while still maintaining linear storage requirements. Unfortunately, these linear

relationships do not hold in three dimensions. As we will note in the next section, even

when we consider "good" triangulation methods in 3-D, the number of cells and faces can

be O(N 2) in the number of vertices.

Given the mesh M, we informally define a dual mesh MD,,at to be any mesh with

the following three properties: each vertex of MD,_I is associated with a cell (face) of M;

each edge of M is associated with an edge of MDuaZ; if an edge separates two cells, ci and

cj of M then the associated dual edge connects two vertices of MD_,,z associated with ci

and cj. In Fig. 2.2, edges and faces about the central vertex are shown for duals formed

from median segments, centroid segments, and by Dirichlet tessellation. The Dirichlet

tessellation of a set of points is a pattern of convex regions in the plane, each region being

the portion of the plane closer to some given point P of the set of points than to any other

point (the shaded region in Fig. 2.2). These Dirichlet regions are sometimes also called

Voronoi regions or Thiessen polygons. The Voronoi regions partition the plane into a net

which is referred to as the Voronoi diagram. Voronoi diagrams play a useful role in the

method of Delaunay triangulation which we now discuss in the next section.

2.1 Delaunay Triangulation

The Delaunay triangulation of a set of points can be defined as the dual of the Dirichlet

tessellation of the set. The Delaunay triangulation is formed by connecting two points if

and only if their Voronoi regions have a common border segment. This also implies that

vertices of the Voronoi polygons are the centers of circumcircles of the triangles. The
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Delaunay triangulation possesses several alternate characterizations and many properties

of importance. Several of these properties are listed below (see [3,4,5,6,7] for complete

details).

(1) Uniqueness. The Delaunay triangulation is unique. This assumes that no four vertices

are cocircular. The uniqueness follows from the uniqueness of the Dirichlet tessellation.

(2) The circumcircle criteria. A triangulation of N _>_2 vertices is Delaunay if and only if

the circumcircle of every interior triangle is point-free. Related to the circumcircle criteria

is the incircle test for four points as shown in Fig. 2.3a-b.

A

C

A

Figure 2.3a. Incircle test for AABC

and point D (true).

Fig_are 2.3b. Incircle test for AABC

and point D (false).

This test is true if point D lies interior to the circ_amcircle of AABC and is equivalent

to asking whether ZABC + ZCDA is less than or greater than /BCD +/_BAD. More

precisely we have that

< 180 ° incircie false/ABC +/CDA = 180 ° /_,B,C,D cocircular

> 180 ° incircle true

(2.5)

Since interior angles of the quadrilateral sum to 360 °, if the circumcircle of/XABC contains

D then swapping the diagonal edge from position A - C into B - D guarantees that the

new triangle pair satisfy the circumcircle criteria. Furthermore, this process of diagonal

swapping is local, i.e. it does not disrupt the Delaunayhood of any triangles adjacent to

the quadrilateral.

(2)Equiangular property. Delaunay triangulation maximizes the minimum angle of the tri-

angulation. For this reason Delaunay triangulation often called the MaxMin triangulation.

This property is also locally true for all adjacent triangle pairs which form a convex quadri-

lateral. This is the basis for the local edge swapping algorithm of Lawson [8] described

below.

(4)Nearest neighbor property. An edge formed by joining a vertex to its nearest neighbor

is an edge of the Delaunay triangulation. Note that this does not describe all edges of the

Delaunay triangulation. This property makes Delaunay triangulation a powerful tool in

solving the closest proximity problem.
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(5)Minimal roughness. The Delaunay triangulation is a minimal roughness triangulation

for arbitrary sets of scattered data, Rippa [9]. Given arbitrary data fi at all vertices of the

mesh and a triangulation of these points, a unique piecewise linear interpolating surface

can be constructed. The Delannay triangulation has the property that of all triangulations

it minimizes the roughness of this surface as measured by the following Sobolev seml-norm:

This is a interesting result as it does not depend on the actual form of the data. This also

indicates that Delaunay triangulation approximates well those functions which minimize

this Sobolev norm. One example would be the harmonic functions satisfying Laplaces

equation with suitable boundary conditions which minimize precisely this norm. In section

3, we will also prove that a Delaunay triangulation guarantees a maximum principle for

the discrete Laplacian approximation (with linear elements). As we will see, this is a quite

different result from that obtained by Ciarlet and Riviart which requires that all angles of

the mesh by less than (_r/2) - e for fixed e.

We now consider several techniques for Delaunay triangulation in two dimensions.

These methods were chosen because they perform optimally in rather different situations.

For instance, the incremental algorithm works very well for mesh enrichment while Law-

son's algorithm is ideal when a complete mesh (not Delaunay) already exists.

(a) Incremental Delaunay Triangulation

For applications such as mesh adaptation and mesh refinement, we desire an algorithm

which allows modification of existing (Delaunay) meshes by adding additional vertices. We

would also like to use the same algorithm to generate an initial mesh given some arbitrary

cloud of points. Incremental algorithms satisfy these requirements and can be made very

efficient owing to the nature of the Delaunay triangulation. Incremental algorithms have

been proposed by Green and Sibson [4], Bowyer[3], and others. In the following discus-

sion we give a brief description of an incremental algorithm. For simplicity, we begin by

assuming that the vertices to be added lie within a bounding polygon of the existing tri-

angulation. If we desire a triangulation from a new set of points, three initial phantom

points can always be added which define a triangle large enough to enclose all points to

be added. In addition, interior boundaries are usually temporarily ignored for purposes of

the Delaunay triangulation. After completing the triangulation, spurious edges are then

deleted as a postprocessing step. In any case, the algorithm begins by considering the

insertion of a new point P to the existing triangulation T, (see Fig 2.4a).

16



Figure 2.4a. Insertion of new vertex. Figure 2.4b. Swapping of suspect edge.

The first step is location, i.e. find the triangle col_taining point P. Once this is done,

three edges are then created connecting P to the vertices of this triangle. If the point

falls on an edge, then the edge is deleted and four edges are created connecting to vertices

of the newly created quadrilateral. Using the circumcircle criteria it can be shown that

the newly created edges (3 or 4) are automatically 1)elaunay. Unfortunately, some of the

original edges are now it, correct. We need to somehow find all "suspect" edges which

could possibly fail the circle test. Given that this can be done (described below), each

suspect edge is viewed as_ a diagonal of the quadrilateral formed from the two adjacent

triangles. The circumcircle test is applied to either one of the two adjacent triangles of the

quadrilateral. If the fourt, h point of the quadrilateral is interior to this circumcircle, the

suspect edge is then swapped as shown in Fig. 2.4b, two more edges then become suspect.

At any given time we can itmnediately identify all suspect edges. To do this, first consider

the subset of all triangles which share P as a vertex One can guarantee at all times that

all initial edges incident to P are Delaunay and any edge made incident to P by swapping

must be Delaunay. Therclore, we need only consider the remaining edges of this subset

which form a polygon about P as suspect and sub_ect to the incircle test. The process

terminates when all suspect edges pass the circumcircle test.

Algorithm: Incremental l)elaunay Triangulation

Step 1. Locate existing call enclosing point P.

Step 2. Identify suspect edges.

Step 3. Perform edge swapping of all suspect edges failing the incircle test.

Step _. Identify new suspect edges.

Step 5. If new suspect edt;es have been created, go to step 3.

Note that aside from point-cell location, the algorithm is asymptotically optimal: only

edges that need to be in,;crted are created and only edges that need be deleted are re-

moved. The only remaini,,g questions concern point-cell location. Two extreme situations

arise in this regard. Typical mesh adaptation and refi_lement algorithms determine the par-

ticular cell for point insertion as part of the mesh adaptation algorithm, thereby avoiding
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point location altogether. In the other extreme, initial triangulations of randomly dis-

tributed points usually require advanced searching techniques for point location to achieve

asymptotically optimal complexity O(N log N). At first glance this may seem simple given

the searching algorithms of section 1. In actuality, it is not quite so simple since the tree

structure must be modified each time a point is included. Alternatively, search techniques

based on "walking" algorithms are frequently used because of their simplicity. These meth-

ods work extremely well when successively added points are close together. The basic idea

is start at the location in the mesh of the previously inserted point and move one edge (or

cell) at a time in the general direction of the newly added point. In the worst case, each

point insertion requires O(N) walks. This would result in a worst case overall complex-

ity O(N2). For randomly distributed points, the average point insertion requires O(N½)

walks which gives an overall complexity O(N] ). For many applications where successive

points tend to be close together, the number of walks is roughly constant and these simple

algorithms can be very competitive.

(b) Divide-and-Conquer Algorithm

The idea is to partition the cloud of points T (sorted along a convenient axis) into left

(L) and right (R) half planes. Each half plane is then recursively Delaunay triangulated.

The two halves must then be merged together to form a single Delaunay triangulation.

Note that we assume that the points have been sorted along the x-axis for purposes of the

following discussion (this can be done with O(N log N) complexity).

Algorithm: Delaunay Triangulation via Divide-and-Conquer

Step 1. Partition T into two subsets TL and TR of nearly equal size.

Step _. Delaunay triangulate TL and TR recursively.

Step 3. Merge TL and TR into a single Delaunay triangulation.

.-°

I I

I

t

Figure 2.5. Triangulated subdivisions. Figure 2.6. Triangulation after merge.

The only difficult step in the divide-and-conquer algorithm is the merging of the left and

right triangulations. The process is simplified by noting two properties of the merge:
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(1) Only cross edges (L-R or R-L) are created in the merying process. Since vertices are

neither added or deleted i_a the merge process, the need for a new R-R or L-L edge indicates

that the original right or left triangulation was defective. (Note that the merging process

will require the deletion of edges L-L and/or R-R.)

(2) Vertices with minimum (mazimum) y value in rue left and right triangulations always

connect as cross edges. This is obvious given thai. the Delaunay triangulation produces

the convex hull of the point cloud.

Given these properties we now outline the "rising bubble" [5] merge algorithm. This

algorithm produces cross edges in ascending y-order. The algorithm begins by ferming

a cross edge by connecting vertices of the left and right triangulations with minimum y

value (property 2). This forms the initial cross edge for the rising bubble algorithm. More

generally consider the situation in which we have a cross edge between A and B and all

edges incident to the points A and B with endpoints above the half plane formed by a line

passing through A - B, see Fig 2.7 .

c

Figure 2.7. Circle of increasing radius in rising bubble algorithm.

This figure depicts a continuously transformed circl¢ of increasing raAius passing through

the points A and B. Eventually tile circle increases in size and encounters a point C from

the left or right triangul_,tion (in this case, point C is in the left triangulation). A new

cross edge (dashed line in Fig. 2.7) is then formed by connecting this point to a vertex of

A - B in the other half triangulation. Given the new cross edge, the process can then be

repeated and terminates when the top of the two meshes is reached. The deletion of L - L

or R- R edges can take place during or after the addition of the cross edges. Properly

implemented, the merge can be carried out in linear time, O(N). Denoting T(N) as the

total running time, step 2 i_ completed in approximately 2T(N/2). Thus the total running

time is described by the recurrence T(N) = 2T(N/2)+ O(U) = O(X log N).

(c) Delaunay Triangulation Via Edge Swappi_:g

This algorithm due t,_ Lawson [8] assumes that a triangulation exists (not Delaunay)

then makes it Delaunay tt_rough application of edge : wapping such that the equiangularity

of the triangulation incre._ses. The equiangularity of a triangulation, A(T), is defined as

19



the ordering of angles A(T) = [al,a2,ct3,...,a3,,(c)s] such that ai < otj if i < j. We

write A(T*) < A(T) if a_ < aj and a_ = ai for 1 < i < j. A triangulation T is

globally equiangular if A(T*) < A(T) for all triangulations T* of the point set. Lawson's

algorithm examines all interior edges of the mesh. Each of these edges represents the

diagonal of the quadrilateral formed by the union of the two adjacent triangles. One

must first check if the quadrilateral is convex so that a potential diagonal swapping can

place without edge crossing. If the quadrilateral is convex then the diagonal position is

chosen which maximizes the local equiangularity. This is equivalent to maximizing the

minimum angle of the two adjacent triangles. Lawson's algorithm continues until the

mesh is locally equiangular everywhere. It is easily shown that the condition of local

equiangularity is equivalent to satisfaction of the incircle test described earlier. Therefore

a mesh which is locally equiangular everywhere is a Delaunay triangulation. Note that

each new edge swapping (triangulation T*) insures that the global equiangularity increases

A(T*) > A(T). Because the triangulation is of finite dimension, this guarantees that the

process will terminate in a finite number of steps.

As Babu_ka and Aziz [10] point out, from the point of view of finite elements the

MaxMin (Delaunay) triangulation is not essential. What is essential is that no angle be

too close to 180 ° . In other words, triangulations which minimize the maximum angle are

more desirable. These triangulations are referred to as MinMax triangulations. These

meshes can also be generated with Lawson's algorithm using similar arguments as given

previously. In this case define A(T) = [t_l,a2,as,...,a3,,(c)_] such that ai > aj if i < j. A

global optimum is reached when A(T*) > A(T) for all possible T* of the point set. Again

we use Lawson's algorithm which guarantees that with each new edge swapping we have

that A(T*) < A(T). Thus the process will terminate in a finite number of steps.

Iterative Algorithm: Triangulation via Lawson's Algorithm

swapedge = true

While(swapedge)do

swapedge = false

Do (all interior edges)

If (adjacent triangles form convez quadrilateral)then

Swap diagonal to form T*.

If (MazMin/MinMaz criteria satisfied)then

T = T*

swapedge = true

Endlf

Endlf

EndDo

EndWhile

Figures 2.8 and 2.9 present Delaunay (MaxMin) and MinMax triangulation for 100 random

points.
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Figure 2.8 Delaunay Triangulation. Figure 2.0 MinMax Triangulation.

(d) Advancing Front Triangulation

Another algorithm for performing Delaunay triangulation is the advancing front

method developed by Merriam [17]. Here the idea. is to start with a known boundary

edge and form a new triangle by joining both endpoints to one of the interior points. This

may generate up to two additional edges, providing they aren't already part of another

triangle. After all the boundary edges have been incorporated into triangles, the new edges

will appear to be a (somewhat ragged) boundary. This moving boundary is often called

an advancing front. The process continues until the front vanishes. The problem here is

to make the triangulation Delaunay. This can be done by taking advantage of the incircle

property; the circumcircle of a Delaunay triangle contains no other points. This allows the

appropriate point to be selected iteratively as showr_ in Fig. 2.10.

\

_t

Figure 2.10. A straightforward iteration procedure selects the node which generates

the smallest circumcircle for a given edge. The absence of nodes inside the circumcircle

establishes convergence.

The iteration begins by selecting any node which is on tile desired side of the given

edge. If there are no such nodes, the given edge is part of a convex hull. Next, the
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circumcircle is constructed which passes through the edge endpoints and the selected node.

Finally, check for nodes inside this circle. If there are any, replace the selected node with

the node closest to the circumcenter and repeat the process. When the circumcircle is

empty of nodes, connect the edge endpoints to the selected node. A prescribed boundary

edge may not meet the Delaunay condition for edges as seen in the divide and conquer

algorithm. This means that the resulting triangulation may not be Delaunay around the

edges. On the other hand, the selection of nodes from only one side of the edge helps

prevent edges that cross a boundary (the so called "breakthrough" problem). Generally

the resulting triangulation is as close to Delaunay as one can get within the confines of the

given nodes and the given boundary edges.

An interesting variant of this approach specifies no interior nodes, only boundary

nodes. Proceeding as before, one soon encounters a proposed triangle with an unaccept-

ably large circumcircle. In this case, an additional node is generated inside the circumcircle

positioned such that the resulting triangle has a suitably small circumcircle. One degree

of freedom remains, and this is usually used to make the resulting triangle equilateral.

Another good choice would be to make it a right triangle. The resulting triangulation

may not be Delaunay because the nodes are not all present at the outset. A few passes of

diagonal swapping takes care of this in two dimensions but there is no good three dimen-

sional analog except to retriangulate. Additionally a number of special cases require care

to avoid crossed edges. These also appear in more traditional advancing front algorithms

like those implemented by LiShner et. al. [11]. Sometimes it is more convenient to specify

interior nodes. For example in certain adaptive refinement algorithms, the positions of the

new nodes are given. In other cases it is more convenient not to specify the exact location

of interior nodes, perhaps relying on adaptive refinement to correct any deficiencies. The

advancing front Delaunay approach even allows these two approaches to be mixed, perhaps

to specify a node distribution along a singular line. Thus there is no clear preference for

for algorithms which do/do not specify interior nodes in advance.

The algorithms described above do not cover the complete repertoire of methods for

Delaunay triangulation. Conspicuously missing is the method of Bowyer [3] and algorithms

of this type which compute the Voronoi diagram directly. This is the method implemented

by Baker [7] in three dimensions. Note that in both two and three dimensions, a good

point placement algorithm is also crutial to the success of the Delaunay triangulation
method. We also have not discussed methods which obtain the Voronoi diagram in 1_ d by

calculating the convex hull of the point set lifted into R a+l by way of the unit paraboloid

transformation za+l = z_ + z_ + ... + z_. Figure 2.11 demonstrates this technique for a

1-D Voronoi diagram. In this figure the intersection of the dashed lines with the x-axis

indicates the boundary of the Voronoi regions. This technique is further discussed in [12].
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Figure 2.11. Voronoi diagram in R 1 from convex hull in R 2.

Before leaving the topic of Delaunay triangulation, we now return to the question of

how many edges and vertices we may expect to generate in the construction of a tetrahedral

mesh from N vertices. A rather depressing result of Klee [13] states that in a d-dimensional

space where M(d, N) is the maximum number of vertices of the Voronoi diagram on N

points we have the following bound on M(d, N)

[d/2]!N rdl l < M(d,N) < 2[d12]!N fd/21, for d even

and

(pd/2] - 1)!Nra/21 < M(d,N) < pdl2]!N r'_121
3

so in three dimensions we have

, for d odd

_N 2 _< M(3, N) < 2N _

Note that vertices of the 3-D voronoi regions are in oae-to-one correspondence with cells of

the tetrahedral mesh. Further note that eqn. (2.2) holds in 3-D as well. This establishes

that in a worst case scenario, both the number of ,:ells and faces can be O(N 2) for 3-D

tetrahedral meshes. Fortunately, vertex configurations which give rise to O(N 2) tetrahedra

are extremely rare. In practice the number of tetrahedra exceeds vertices by a factor of

5-6.

2.2 Greedy Triangulation

As explained in Preparata and Shamos [6], a greedy method is one that never undoes

what it did earlier. The greedy triangulation continually adds edges compatible with the

current triangulation (edge crossing not allowed) until the triangulation is complete, i.e.

Euler's formula is satisfied. One objective of a triangulation might be to choose a set

of edges with shortest total length. The best that the greedy algorithm can do is adopt

a local criterion whereby only the shortest edge awfilable at that moment is considered

23



for addition to the current triangulation. (This does not lead to a triangulation with

shortest total length.) Note that greedy triangulation easily accommodates constrained

triangulations containing interior boundaries and a nonconvex outer boundary. In this

case the boundary edges are simply listed first in the ordering of candidate edges. The

entire algorithm is outlined below.

Algorithm: Greedy Triangulation

Step 1. Initialize triangulation T as empty.

Step _. Compute (i) candidate edges.

Step 3. Order pool of candidate edges.

Step _. Remove current edge es from ordered pool.

Step 5. If( e° does not intersect edges ofT ) add e° to Y

Step 6. If(Euler's formula not satisfied) go to Step 4.

Figure 2.12 Delaunay Triangulation. Figure 2.13 Greedy Triangulation.

Figures 2.12 and 2.13 contrast the Delaunay and greedy algorithm. The lack of angle

control is easily seen in the greedy triangulation. The greedy algorithm suffers from both

high running time as well as storage. In fact a naive implementation of Step 5. leads

to an algorithm with O(N 3) complexity. Efficient implementation techniques are given

in Gilbert [14] with the result that the complexity can be reduced to O(N 2 log N) with

O( N 2 ) storage.

2.3 Data Dependent Triangulation and Mesh Adaptation

Without question, one of the most valuable attributes of unstructured meshes is their

ability to locally adapt and refine the mesh to better resolve features of the flowfield:

shocks, contacts, boundary layers, vortices, etc. Perhaps it is not quite as clear how this

should always be done, i.e. by adding/deleting grid points, moving grid points, changing

connections. Even less clear is how to decide when adaptation should be done. After the

adaptation, we need to transfer a solution computed on a previous mesh to the new mesh

in a conservative manner. This is not a trivial operation. In a later section we describe a

strategy for doing this.
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Data Dependent Triangulation [15,16]

Unlike mesh adaptation, a data dependent triangulation assumes that the number

and position of vertices is fixed and unchanging. Of all possible triangulations of these

vertices, the goal is to find the best triangulation under data dependent constraints. In

Nira, Levin, and Rippa [15], they consider several data dependent constraints together

with piecewise linear interpolation. In order to deter'mine if a new mesh is "better" than

a previous one, a local cost function is defined for e;_ch interior edge. Two choices which

prove to be particularly effective are the JND (Jump in Normal Derivatives) and the ABN

(Angle Between Normals). Using their notation, consider an interior edge with adjacent

triangles T1 and T2. Let P(z, Y)I and P(z, 9)2 be tile linear interpolation polynomials in

T1 and T2 respectively:

Pl(z,y) = alz + bly + cl

P2(z,y) = a2z + b2y + c2

The JND cost function measures the jump in normal derivatives of P1 and P2 across a

common edge with normal components rt_ and ny.

8(fT, C) =: [Ytz(O, 1 -- (g2) -_-/1,y(bl - b2)], JND cost function

The ABN measures the acute angle between the two normals formed from the two planes

P1 and/'2. Again using the notation of [15]:

s(fT,e) = 0 = cos-l(A), A =
ala2 + bib2 + 1

+ + + + 1)'
ABN cost function

The next step is to construct a global measure of these cost functions. This measure is

required to decrease for each legal edge swapping. This insures that the edge swapping

process terminates. The simplest measures are the L: and 12 norms:

edges

=
edges

Recall that a Delaunay triangulation would result if we were to choose cost functions which

maximize the minimum angle between adjacent tria_gles (Lawson's algorithm). (We also

claim that this is equivalent to minimizing the roughness of the triangulation.) Although

we would like to obtain a global optimum for all cost functions, this could be very costly

in many cases. An alternate strategy is to abandon the pursuit of a globally optimal

triangulation in favor of a locally optimal triangulation. Once again Lawson's algorithm is

used. Note that in using l,awson's algorithm, we require that the global measure decrease

at each edge swap. This i:; not as simple as before since each edge swap can have an effect

on other surrounding edge cost functions. Nevertheless, this domain of influence is very

small and easily found.
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Iterative Algorithm: Data Dependent Triangulation via Modified Lawson's Algorithm

swapedge = true

While(swapedge)do

swapedge = false

Do (all interior edges)

If (adjacent triangles .form convez quadrilateral)then

Swap diagonal to .form T*.

If (R(fT. ) < R(fT))then

T= T*

swapedge = true

EndIf

EndIf

EndDo

EndWhile

Because edge swapping only occurs when R(fT. ) < R(fT) the method terminates in a

finite number of steps. Figures 2.14-2.15 plot the Delaunay triangulation of 100 ran-

dom vertices in a unit square and piecewise linear contours of (1 + tanh(9y - 9z))/9

on this mesh. The exact solution consists of straight line contours with unit slope.

Figure 2.14 Delaunay Triangulation. Figure 2.15 Piecewise Linear Interpolation

of (1 + tanh(gy - 9z))/9

In Figs. 2.16-2.17 the data dependent triangulation and solution contours using the JND

criteria and 11 measure suggested in [15] are plotted.
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Figure 2.16 Data Dependent Figure 2.17 Piecewise Linear Interpolation

Triangulation. of(1-- tanh(9y- 9z))/9

Note that the triangulations obtained from this method are not globally optimal and highly

dependent on the order in which edges are accessed. Several possible ordering strategies

are mentioned in [16].

Mesh Refinement Schemes

Conventional mesh adaptation algorithms perf,_rm two basic operations. The first

operation is to locate all regions requiring mesh refinement or coarsening. The second is to

generate a new mesh either by modification of the e:dsting mesh or by regeneration of all

or part of the mesh using new mesh generation parameters. The most difficult part of the

process is the identification of regions to be refined. Essentially all methods for locating

these regions attempt to estimate the magnitude of the solution error. This can be done

using one of several classicM and nonclassical metho=ls:

(1) Interpolation error estimates. These estimates are discussed in Ciarlet [19], Ciarlet and

Raviart [20], Carey and Oden [18]. A typical finite element interpolation estimate relates

the Sobolev norm of degree s of the error between the interpolating polynomial _h and

the exact solution u in terms of the Sobolev norm of the exact solution:

hk+l
Ilu- _hll, < c --II_llk+l (2.6)

p°

where k is the degree of the element polynomial, h is maximum element circumcircle in

the mesh, and p is the minimum element incircle in the mesh. The solution is assumed

regular in k + 1 derivativ{rs. Usually s is chosen equ_l to zero (which gives an 12 norm).

Ilu- _hll0 < c h_+'ll_[l_+_ (2.7)

For piecewise linear elements similar results can be: obtained using a semi-norm of the

exact solution:

Ilu- _htl0 < c, hi,fi, (2.8)
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Ilu- "_hllo< c2 h_lul2 (2.9)

In actual implementation, additional assumptions must be made. The first concerns local-

ity. We really desire to use these estimates on a cell by cell basis. This is justified since

typical interpolation operators have compact support. In this light, h is usually chosen

as the cell diameter. This implies a certain degree of uniformity over the local support.

The second assumption concerns the calculation of the k + 1 Sobolev norm (semi-norm)

of the exact solution. This norm is usually not available and must be approximated from

the numerical solution. This is not easily done since k degree elements do not generate

k + 1 degree derivatives. To approximate these derivatives requires considering a group of

elements and some type of finite difference approximation. This leads to added complexity

and lower confidence in the accuracy of the estimate. The other approach is to use lower

order estimates such as (2.8) rather than (2.9). Unfortunately, refinements using (2.8) for

linear elements may not give the best refinement criteria. The third assumption concerns

the overall strategy. We really desire to estimate the error between the exact solution and

the numerical solution. The interpolation estimates (2.6) only gives part of the estimate.

u -- uh _.._.

interpolation error

Ideally, we would like to use error estimates for the entire scheme of the form

llu- uhll0 c h +Plulk+l (2.10)

This would provide use with refinement criteria best suited to the scheme.

(2) Error Extrapolations. One classic tecMfique used in numerical methods to estimate

the solution error is to compute solutions on a single mesh using two or more schemes of

different order accuracy. A second technique uses a single scheme but computes solutions on

multiple meshes of different density. Both of these methods have implementation problems.

The first technique requires that both schemes be uniformly of different order accuracy.

This can be difficult to guarantee, especially at boundaries and singular points. The

second technique requires uniform refinement or coarsening of the mesh. Refinement is

easily done, but requires a significant increase in computer memory. Mesh coarsening

lessens the burden on memory but the task of finding a "uniformly" coarser unstructured

mesh is not trivial (unless the original mesh was constructed by uniform refinement of

coarser meshes).

(3) Heuristic Indicators. This is most easily done by interrogating solution quantities

(entropy, total enthalpy, vorticity, etc.) or solution gradients (density gradients, pressure

gradients, velocity/Mach number gradients, etc.). Figures 2.13 and 2.14 show adaptive

meshes generated by Dr. D.J. Mavriplis, ICASE / NASA Langley. These meshes were

adapted based on a Mach number gradient function. The incremental Delaunay algorithm

was used to retriangulate the added points. Because of the adaptation criteria, a majority

of the points added are located in the boundary layer region.
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Figure 2.13 Original Mesh.

(Courtesy D.J. Mavriplis)

Figure 2.14 Adapted Mesh.

(Courtesy D.J. Mavriplis)

This method works remarkably well when the solution error is dominated by a few flowfield

features. This is especially true when shock waves _md other flowfield discontinuities are

present. In this case, interpolation estimates can lead to poor mesh adaptations.

2.4 Conclusions

A wide variety of mesh generation techniques _,ave been examined and there appear

to be no clear cut winners in the grid generation rr_ce. Note that we have not discussed

mesh generation in three dimensions. Mesh generation in three dimensions is much less

developed. This is probably because the underlying theory in three dimensions is not as

well understood. Indeed, the complexity of problems in three-dimensional computational

geometry is much higher than in two dimensions. We hinted at this by giving the result

of Klee. Simple operations such as edge swapping do not have 3-D counterparts. Three

dimensional grid generation will no doubt be a challenging field for some time to come.
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3.0 Finite-Volume Unstructured Mesh Solvers

In the remaining sections, we consider the numerical solution of the Euler equations on

unstructured grids. We begin first by considering scalar conservation law equations in the

integral, divergence, and weak form. We then show that the spatial discretization obtained

from Gaierkin's method applied to the weak form of the equations is identical to a finite

volume discretization of the integral equations on the median dual. We then examine the

discrete Laplacian operator. Although the continuous Laplacian operator has a maximum

principle, we find in general that this is not true of the discrete Galerkin (Finite Volume)
discretization on arbitrary meshes. To our relief, we do discover that meshes constructed

via Delaunay triangulation do guarantee a discrete maximum principle. Upwind algorithms

for scalar conservation law equations are then considered. We view these from the point

of view of Godunov's method [23]. That is to say, we think of cell averaged quantities

rather that pointwise values. This introduces the concept of reconstruction. Schemes for

scalar equations which are based on high order reconstruction are then constructed. When

discontinuities are present, monotonicity enforcement is required (at least approximately);

the best way to do this is still an open question. Stability of the upwind algorithms for

scalar equations is outlined. Again, we show that a discrete maximum principle can be

invoked. We then turn to the Euler equations themselves. We review the schemes of Jame-

son and Mavriplis which are essentially Galerkin's method with added smoothing. Upwind

schemes for the Euler equations are then considered. These schemes require the choice of

"numerical" flux function. This function serves to correctly sort out waves entering and

leaving the control volume. Several choices are available. We will only consider a few.

Finally, we show some recent results obtained by high order reconstruction.

3.1 Integral, Divergence, and Weak Form of Scalar Conservation Law Equations

The choice of numerical methods used to solve a conservation law equation can be

influenced by the form in which the equation is presented. A conservation law asserts that

the rate of change of the total amount of a substance with density z in a fixed region f_ is

equal to the flux F of the substance through the boundary all

_--7 z da + F(z) • n dI : 0
n

(integral form)

A finite difference practitioner would apply the divergence theorem to this integral equation

and let the area of f_ shrink to zero thus obtaining the divergence form of the equation.

0

O--_z + V. F(z) = 0 (divergence form)

The finite element practitioner constructs the divergence form then multiplies by an arbi-

trary test function _ and integrates by parts.

O L dpz da L Vq_ " F(z) da + fo dpF(z) n dl -- OOt a (weak form)
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These three forms can produce seemingly different numerical schemes. In reality these

methods are closely related. Some differences do appear in the handling of boundary

conditions, solution discontinuities, and nonlinearities. When considering flows with dis-

continuities, the integral form appears advantageous since conservation of fluxes comes for

free and the proper jump conditions are assured. At discontinuities, the divergence form

of the equations implies satisfaction in the sense of distribution theory. Consequently, at

discontinuities special care is needed to construct finite difference schemes which produce

physically relevant solutions. Because the test functions have compact support, the weak

form of the equations also guarantees satisfaction of the jump conditions over the extent

of the support.

3.2 Galerkin and Finite Volume Discretizations

Although the integral and weak forms of the equations appear different, it is not

difficult to show that they can produce indentical discretizations. In fact, we can show this

for a Galerkin discretization (linear elements) of a general model equation with diffusion

#>0:
O

+ v. F(z)-- V. gVz

Multiplying by a test function ¢ and integrating over f_ by parts produces the weak form

of the equation.

0__ da-/t _ VC.F(z)da+_nCF(z)'n dlOt/n¢ z =-/t_PVC'Vzda+_t_ pCVz'ndl (3"1)

In the finite element method, the entire domain is first divided into smaller elements. In

this case the elements are triangles Tj, such that Q = UTj, Tj fq Tt = 0, l _ j. In Fig.

3.1a we show a representative vertex with adjacent neighbors. (To simplify the discussion

in the remainder of these notes, we adopt the convention that the index "j" in subsequent

equations refers to a global index of a mesh whereas the index "i" always refers to a local
index. We sometimes use vo which is interpreted globally as vj.) The linear variation of

the solution in each triangle Tj can be locally expressed in terms of the three local nodal

values of the solution, u h i = 1,2,3, and three e_ement shape functions rti, i = 1,2,3.% 5'

3

uh(T'_ y)T i = _ _ti(T_'Y) lthi, i

i=l

(local representation)

Each element shape function rti represents a linea_: surface which takes on unit value at

vi and vanishes at the other two vertices of the lriangle as well as everywhere outside

the triangle. The solution can also be expressed gtobally in terms of nodal values of the

solution and global shape functions.

h

= Nj(.,y) =j
nodes

(global representation)
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In this form the global shape functions are piecewise linear pyramids which are formed

from the union of all local shape functions with have unit value at vj. These global shape

functions also enjoy compact support, i.e. they vanish outside the region 12j formed from

the union of all triangles incident to vj. A global shape function for vertex vj is shown in
Fig. 3.1b.

4 4

5

5 3

Mesh

Median Dual

Centroid Dual

6 2

1

Figure 3.1a. Local mesh with Figure 3.1b. Global shape function

centroid and median Duals. for vertex v0 (not labelled).

The Galerkin finite element method assumes that the class of test functions is identical

to the class of functions approximating the solution. The simplest test functions'of this

sort are the individual shape functions. To obtain a Galerkin discretization for a typical

vertex vj, we simply set _bh = Nj and evaluate (3.1) in f/j. Since _ vanishes on af/j we

can simplify eqn. (3.1) and obtain the discrete Galerkin approximation:

j j j

Before we evaluate eqn. (3.2), we need to introduce more notation concerning the geometry

of Fig. 3.1a. In Fig. 3.2 we give the index and normal convention which will be used
throughout these notes.

Figure 3.2. Vertex v0 and adjacent neighbors.

32



We assume a periodic index i, i.e. [1, 2, ..., d(v0), 1,2,...] and denote the triangle with

vertices 0, i, and i + 1 as triangle Ti+l/2. We also use this convention for other quantities

such as areas and gradients which are computed in Ti+l/2. We also find it convenient to

define normals for straight edges which are scaled by the length of the edge. These will be

denoted by -fi*. In this notation we have a simple formula for the gradient of the numerical

solution in a triangle Ti+l/2

Vzhi+l/_ -1 f zh_ _ _ h _ )- _, 0 i+1/2 + z/h n i+1 - zi+l n i
2Ai+a/2

(3.3)

Similarly, we can calculate the gradient of the test function in each triangle (replace z by

4) in the previous formula with q_0 = 1, qbi = 0, _bi+l := 0).

--1 ___

V_i+l/2 -- 2Ai+1/2 n i+l/:z

The discrete form of eqn. (3.2) is now written as

d(vo) --_

0 qbzh da + Z • V(z h) da- • pVz" da
i i=1 z'zai+l]2 JYi+tl 2 .= _'zai+a/2 "lTi+tl3

(3.4)

We can now evaluate the flux integral either by exact integration (when possible) or nu-

merical quadrature. In this case we assume the latter.

1A[ r(z aa = V(z ) +
JTi+l/2

The diffusion term is also evaluated by numerical quadrature with Vz h constant in Ti+a/2.

-- h
f pVz _ da = Ai+l/2 #i+l/2Vzi+l/2
JTi+x/2

This simplifies (3.4) considerably.

a(vo) 1

/_ dO,o) 1 _ --_ h0 qbzh da+ Z 6-ni-t l/2"(F(zo h) + F(z/h) + F(z_+l)) Z 21"ti+l/_ n i+a/2"Vi+l/2z
Ot i i=a i=_

(3.5)

Let's recap what we have so far. Equation (3.5) represents a Galerkin discretization of

the model equation assuming piecewise linear functions. Note that as far as the geometry

is concerned, only the exterior normals of ftj appear. Conspicuously absent are the normal

vectors for interior edges. This strengthens our confidence that we can show an equivalence

to a finite volume discretization on nonoverlapping control volumes. To do this we need

to exploit geometrical identities in order to show an equivalence to a consistent boundary

integration in the finite volume method. Reference [21] points out that the flux term can
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be manipulated using the identity V'd(v°)z._i=a -fi*i+a/2 = 0 into a form in which the relevant

geometry is any path connecting adjacent triangle centroids:

1(F(4')+F(z,")).(n,+,/,+ n,_,/,)d(_0) 1 --+ --+

E _-fi"i+'/_" (F(z°h) + F(z/h)+ F(z_+'))= E
i=1 i=1

1 ["'+'• ndl

i=1

d(v°) I f_(Ro+R/+g/+ n)= _ _ (r(z0_)+ r(zb) • at
i=I '/I(R°+R_+R_-_)

(3.6)

The diffusion term also simplifies.

d(vo) 1 __,
• pi+l/2Vi+a/zz =E 2 n i+a/z -- h

i=1

dO,o) f½(go+R,+dE - _'" n dl (3.7)
i=a Pi+a/2Vi+a/2z ,t½(go+R_)

To obtain a single consistent path for the integrations appearing in eqns. (3.6) and (3.7)

requires that the path pass through the centroid of each triangle and the midside of each

interior edge. If we simply connect these points, we see that this is precisely the median

dual of the mesh. This dual completely covers the domain (no holes), thus it represents

a consistent and conservative finite volume discretization of the domain which is spatially

equivalent to the Galerkin approximation. We can now write the scheme in a finite volume

' l(Ro + Ri + Ri+I), R_' = I(Ro + Ri))fashion (Ri+I/2 = _

a(_0)
0-h h ---,

-_q_ z da+ E(H. n)i=O
i=1

where H is the numerical flux of the finite volume discretization.

(H. "-fi')i =2(F(zoh)+ F(z_)) • fR:+'/n2 dl
JR'+I�2

-- • fR'n dl - -_i+1/2_i+1/2 zh . fR.',+x_ dl
-- #i-1]2Vi-1/2zh dR'i_tl 2 dR'_

(3.8)

Conclusion: The spatial discretization produced b!t the Galerkin finite element scheme

with linear elements has an equivalent finite volume discretization on nonoverlapping con-

trol volumes with bounding curves which pass through the centroid of triangles and midside

of edges. One such set of control volumes satisfying these constraints is the median dual.

We now need to ask if the time integrals produce identical "mass" matrices for the

Galerkin finite element and finite volume schemes. The answer to this question is no. In
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fact, these matrices are not the same in one space dimension. The Galerkin mass matrix

for a simple 1-D mesh with uniform spacing produces a row of the mass matrix with the
following weights:

0 1o = + + (Finite Element)

The finite volume scheme on "median" dual produces the following weights:

fn 0 10 zhdz = -_Az'_(Zj- 1 -4- 6zj -_- Zj+I) (Finite Volume)

Although the finite volume matrix gives better temporal stability, the finite element mass
matrix is more accurate.

3.3 Conditions for a Discrete Maximum Principle for the Laplacian Operator.

In this section, we ask under what conditions the finite volume (Galerkin) discretiza-

tion of the Laplacian V2z h with linear elements possesses a discrete maximum principle,
i.e. the value at an interior vertex does not exceed the minimum or maximum of all ad-

jacent neighbors. In the paper by Ciarlet and Ra.viart [22], they state and prove that

sufficient conditions for a discrete maximum principle for V 2 are that all angles of the

triangulation are < (_r/2) - c/or frred e. In this section we will show that this condition

is overly restrictive. We prove a less restrictive geometric condition on the discretization:

meshes constructed by the method Delaunay triangulation guarantee a discrete mazimum

principle. Although we are analyzing the Laplacian operator V • Vz = V2z h with linear

elements, we could assume the more general diffusion operator of the previous section,

V • #Vz h, without additional difficulties. Note that the discrete Laplacian is a linear op-

erator depending only on immediate neigbors. We can write the discretization in terms of

neighboring values of the solution (including z0h) and constant weights.

d(_0)

V2zh= E wizh
i=0

(3.9)

For constant weights, a maximum principle for arbitrary data is guaranteed if

d(_o)

>" wi=O, withwi>Ofori_.'_ 1 and Wo <0 (3.10)
i=0

Since we have V2z h = 0, we can solve for z0h.

V'd(_°) z_
Zoh = L-._I=I Wi

_'_d(vo) (3.11)
_--_i= 1 Wi
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This implies a maximum principle.

min(z_,z_, zah(,,o)) < zoh < max(z_,z_, h•.., ..... , zd(_o))

As we have seen before, the discrete form can be written as

V_zh _ 1 d(_o)
- A°--7

i=l

We also have the expression for the gradient in each triangle (eqn. 3.3).

w,"+,/,= -12Ai+ll_

Putting these expressions together, we have the full discretization of the Laplacian.

(3.12)

(3.13)

(3.14)

V2zh = 1 --( n i+112 • n i+lD) "---_ '-4( n,-,/2" ni-1) (_i+,/2 "..yi+,)
2A° 4 A, + -

i=1 Ai+l/a ]

(3.15)
First, we need to prove that all coefficients sum to exactly zero. It should be clear

that this condition is satisfied given that all quadratures integrate linear functions exactly.

It should also be clear that the coefficient weight multiplying z0h is always negative. The
only remaining task is to find conditions such that

(Hi-i/2" '_i-1) (_i+1/2" hi+l)

- _>0 (3.16)
Ai-1/2 Ai+ l /2

After applying elementary vector and trigonometric identities, we find that this term

is written most simply in terms of the tangent of the angles 6 and 7 as described by Figs.
3.2 and 3.3.

(_-1/2. -_-_) (-_,+_/2--_+_)
- = 2 (tan 6 + tan 3')

Ai-l /2 Ai+1D

We have that tan (_) + tan(7 ) = tan(_ + 7)(1 - tan(_) tan(7)). This implies that/_ + 7 -<
180 ° .

Figure 3.3. Circumcircle test for adjacent triangles.
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If we consult equation (2.5), we see that this is precisely a characterization of the circum-

circle test given in section 2 for Delaunay triangulation. These conditions are required

of all interior edges of the mesh. Therefore, we are in a position to state the following

conclusion:

Conclusion: A mazimum principle for the discrete Laplaeian operator with linear ele-

ments is guaranteed if the triangulation is Delaunay.

3.4 Upwind Algorithms for Scalar Conservation Law Equations.

In this section we consider upwind algorithms for scalar hyperbolic equations. In

particular, we concentrate on upwind schemes based on Godunov's method [23] and defer

the discussion of "upwind" schemes based on the Petrov-Galerkin formulations (SUPG,

GLS) or the fluctuation decomposition method [24] to the lectures of Profs. Johnson and

Deconinck, respectively.

The development presented here follows many of the ideas developed previously for

structured meshes. For example, in the extension of Godunov's scheme to second or-

der accuracy in one space dimension, van Leer [25] developed an advection scheme based

on discontinuous piecewise linear distributions together with Lagrangian hydrodynamics.

Colella and Woodward [26] and Woodward and Colella [27] further extended these ideas

to include discontinuous piecewise parabolic approximations with Eulerian or Lagrangian

hydrodynamics. Harten et. al. [28,29] later extended related schemes to arbitrary order

and clarified the entire process. These techniques have been applied to multi-dimensional

structured meshes via individual one-dimensional application along coordinate lines. This

has proven to be a highly successful approximation but does not directly extend to un-

structured meshes. In previous work, we have constructed schemes for unstructured meshes

using discontinuous piecewise linear distributions of the solution in each cell (Barth and

Jespersen [30]). In a recent paper (Barth and Frederickson [31]), we construct high order

numerical schemes for unstructured meshes using a reconstruction algorithm of arbitrary

order. Much of the discussion presented here is taken from these papers.

We begin with a general formulation of the finite volume upwind method using piece-

wise polynomial functions. Given the general form, we can then go back and look at the

simpler cases, i.e. the first and second order upwind schemes. Hopefully, this will provide

a clear prospective of the method.

General Upwind Formulation

In developing a general finite-volume scheme, we consider the integral form of a con-

servation law equation for some domain, ft and its tessellation T(f_) comprised of cells, c j,

ft=Ucj, cknc_=0, kCj.

cg---t uda + F(u)-ndl = 0 (3.17)
ci
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In the introduction to section 3.1, we gave the textbook definition of a conservation law

equation, i.e. an equation that asserts that the rate of change of the total amount of a

substance with density u in a fixed control volume is equal to the flux of the substance

through the boundary. In order to motivate Godunov's method, we note that the total

amount of the substance in a cell cj is equal to the integral cell average of the substance

density, _, multiplied by the volume (area in 2-D) of cj.

j u da = _jAj

In Godunov's method, we treat these cell averages as the fundamental unknowns. Of

course if we were given an function and asked to calculate the integral average of this func-

tion in each cell, the result would be a piecewise constant function. It would appear that

we have thrown away a great deal of information. The question is how much information

can we recover (reconstruct) given the piecewise constant cell averages? This is an inverse

problem. Given an averaging operator, we would like to construct its inverse. The amount

of information we can reconstruct hinges critically on smoothness of the original function.

Clearly at the level of the numerical scheme, we can only afford to think about functions

of finite dimension, for example polynomials of degree k or less. We denote this class of

functions by 7_s. If the original function is a member of this class, then we should expect

that we can construct a unique inverse, that is to say we can perform an exact reconstruc-

tion. We refer to this as the property of "k-exactness". Unfortunately, the majority of

functions of interest do not reside in 7_k. In this case, we seek a reconstruction operator

which approximates these functions as well as possible in this restricted class of polynomi-

als. We also choose to use C -1 discontinuous polynomials (of degree k or less) from cell to

cell. We do this because we require that the finite dimensional reconstruction operator be

of compact support. (In fact, we require that the entire scheme be of compact support.)

This is a major complaint of finite element schemes (Galerkin and Petrov-Galerkin) using

continuous elements. These schemes produce a nondiagonal "mass matrix" which implies

global support. This is a holdout from elliptic equations. Clearly for hyperbolic equations

this is physically and mathematically incorrect.

In the extension of Godunov's method to high order, we consider distinct piecewise

polynomials in each control volume (expanded about the centroid)

uk(z,y) = _ a(,m,,)P(_,,,_)(z - zc,y- yc) (3.18)

mq-n<k

where P(,_,,0(z- z,,y-yc)= (z-z,)m(U-y,) ". These are the reconstructed polynomials
given cell averages of the numerical solution. Because these polynomials are discontinu-

ous from cell to cell, along a cell boundary two distinct values of the solution can be

obtained. To resolve this nonuniqueness, the flux is replaced by a "numerical flux func-

tion", F(u+,u_, n), which when given two solution states produces a single unique flux.
We choose to use numerical flux functions derived via mean value linearizations. As we

will see, this simplifies the analysis and allows us to prove stability and monotonicity.

The choice of flux function is subject to the general constraint that when both states are
identical that the true flux is obtained.

?(u,u,n) = F(u).n
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Approximating (3.17) by piecewisepolynomials and numerical flux function, we obtain a

finite dimensional approximation to the exact integral equation.

ddt _j uk da + _i-f(u_'uk-'n)d/ = O (3.19)

Given the consistency condition for the numerical flux, it should be clear that (3.19) is

exact whenever the exact solution is a polynomial of degree k or less, i.e. u E 7_k. Since we

are given the numerical cell averages, _, we also require that the reconstruction operation

preserve cell averages. Reguardless of what polynomial is reconstructed, we require that

its cell average be exactly -kuj. We refer to this as "conservation of the mean".

The solution algorithm for (3.19) is a relatively standard procedure for extensions

of Godunov's scheme in Eulerian coordinates [23-31]. The basic idea is to start with

piecewise constant data in each cell with value equal to the integral cell average. We then

reconstruct piecewise polynomials in each cell given cell averages of surrounding neighbors.

Using these reconstructed polynomials, we can carry out the boundary integral in (3.19)

to higher accuracy than that attainable with piecewise constant data. Once the boundary

integral in (3.19) is carried out (either exactly or by numerical quadrature), the solution

can be evolved in time. In most cases, we use standard techniques for integrating the

resultant ODE equations, i.e. Euler implicit, Euler explicit, Runge-Kutta. Because we can

interpret the time integral as an evolution of the cell average, the result of the evolution

process is a new collection of cell averages. The process can then be repeated. The process

can be summarized in the following steps:

(1) Reconstruction in Each Cell: Given integra_ cell averages in all cells, reconstruct

pieeewise polynomial coefficients a(_,n) for use in equation (3.18). For solutions containing

discontinuities we must consider monotonicity enforcement.

(2) Flux Evaluation on Each Edge: Consider each cell boundary, acj, to be a collection

of edges from the mesh. Along each edge, perform a high order accurate flux quadrature.

(3) Evolution in Each Cell: Collect flux contributions in each cell and evolve in time

using any time stepping scheme, i.e., Euler explicit, Euler implicit, Runge-Kutta, etc. The

result of this process is once again cell averages.

By far, the most difficult of these steps is the polynonfial reconstruction given cell averages.

This is especially true for k > 1. For linear reconstruction, the process is slightly simpler

because any piecewise linear function constructed about the centroid of the control volume

has the correct cell average reguardless of the slope. [n this case we need only worry about

k-exactness. In the following paragraphs, we describe some design criteria for constructing

a general reconstruction operator.

Reconstruction

The reconstruction operator serves as a finite-dimensional (possibly pseudo) inverse

of the cell-averaging operator A whose j-th component Aj computes the cell average of

the solution in cj.

1 f u(_e,y) da
_j : Aju : a-_
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As we mentioned earlier, we usually require the following properties of the reconstruction

operator:

(1)Conservation of the mean: Simply stated, given cell averages _, we require that all

polynomial reconstructions u k have the correct cell average.

if u k=Rk_ then _=Au k

This means that R k is a right inverse of the averaging operator A.

AR k = I (3.21)

(2) k-exactness: We say that a reconstruction operator R k is h-ezact if RkA reconstructs

polynomials of degree k or less exactly. We require,

if uC_ok and _=Au, then u k=Rk_=u

In other words, R h is a left-inverse of A restricted to the space of polynomials of degree
at most k.

RkA - I (3.22)

Note that the second property of k-exactness is not mandatory. We could envision

reconstruction operators which are only of the correct order of accuracy. Schemes using

k-exactness are easier to analyze and to assure high order accuracy. If we consider an

interior edge of the mesh then two estimates for the solution can be obtained; one from

each adjacent cell. Assuming smoothness, the property of k-exactness provides that the

difference between these two values diminish with increasing k at a rate proportional to

h k+l were h is a maximum diameter of the two cells. In Fig. 3.4a we show a global quartic

polynomial u C _4 which has been averaged in each interval. In Fig. 3.4b we show a

quadratic reconstruction u k E _2 given the cell averages of Fig. 3.4a. Close inspection

of Fig. 3.4b reveals small jumps in the piecewise polynomials at interval boundaries.

Because we are approximating by piecewise quadratics, the jumps are very small. These

jumps would decrease even more for cubics and vanish altogether for quartic reconstruction.

Property (1) requires that the area under each piecewise polynomial is exactly equal to

the cell average.
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i
Figure 3.4a. Cell averaging of quartic

polynomial.

Figure 3.4b. Piecewise quadratic
reconstruction.

Flux Evaluation

The task here is to evaluate the flux integral.

_¢j ?(u__, uk,n) dl (3.22)

We assume that the solution states u__ and u h_ can be evaluated anywhere on an edge. As

mentioned earher, we prefer flux functions based on mean value linearizations, i.e. define

f(u,n) = F(u) • n then

f(u+,u_,n) = _(f(u+,n) + f(u_,n)) - lf(_,n)'l(u+ - u_)
(3.23)

where f(u+)-f(u_)=/(fi,n)'(u+- u_)and fi= Ou_ +(I-O)u+ for some 0 E [0,11.

This last statement is merely an application of Taylor's formula with remainder. In prac-

tice, the flux integral (3.22) is never evaluated exactly, except when the data is piecewise

constant. When piecewise linear functions are used, a midpoint quadrature formula is

usually employed. This is used rather than the shghtly more accurate trapezoidal quadra-

ture because it requires only one flux evaluation per edge segment while the trapezoidal

quadrature requires two. When considering schemes with reconstruction order k greater

than one, we suggest in [31] that Gauss quadrature formulas be used. Recall that N point

Gauss quadrature formulas integrate 2N - 1 polynomials exactly. These quadrature for-

mulas give the highest accuracy for the lowest number of function evaluations. We find

that for k-exact reconstruction, we need to use N > (k + 1)//2 point Gauss quadrature

formulas.
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Duality of Schemes

The choice of control volumes is not unique. Even so, the various choices usually

fall into one of two categories: control volumes formed from the mesh or control volumes

formed from the dual of the mesh, see Fig. 3.1a. We can show in the general formulation

that all geometrical information needed in Godunov's method is contained in the following

calculation:

I(m,,,)=_z'_y"da, Vrn+n<k (3.24)

Note that I(0,0) is the area of the control volume, I(1,0), I(0,1) give the centroid coordinates

(scaled by area), I(1,1),I(2,2),I(1,2),I(2,_) are the moments of inertia, etc. More importantly,

this integral is only a function of the bounding curve, Oc.

I(m"*) = _ 1---_z"+lY= rt_ dl = _ n-_z"_Y"+l rtv dl= _ G'n dlcm + 1 c c (3.25)

where n = (n_,nv) T and G is any vector primitive such that X7 • G = z"_V '_. All of these

forms can be calculated exactly on any control volume with perimeter defined by straight

line segments. If we ignore boundaries, given a geometrical description of each edge or

dual edge, all geometrical information is known. All other information concerning the

relationship between the mesh and dual mesh is determined, i.e. each vertex of the mesh

corresponds to a cell of the dual, each cell of the mesh corresponds to a vertex of the dual,

and so on. Again ignoring boundary edges, this is perfect duality.

Although working with cells of the mesh as control volumes seems like the most

straightforward thing to do, it is not always the best strategy. If we consider a mesh of

triangles, the number of cells of the mesh out number vertices by roughly two to one (see

equation 2.3). This means than the number of control volumes required using cells rather

than dual cells is also two to one. Consequently, using mesh duals offers some savings in

terms of storage and computation for those quantities computed and stored at each control

volume. Note that edges and dual edges are one-to-one (neglecting boundaries) so that

variables stored by edge and computations performed by edge are roughly the same.

In section 3.2, control volumes formed from the median dual of the mesh naturally

arose in the Galerkin-like finite volume discretization. Of course in the general finite volume

method, we are free to choose other control volumes. Taking a look at Fig. 3.1a, we see

that other control volumes are possible. The dual formed by connecting adjacent cell

centroids looks appealing. The use of the Dirichlet regions also looks interesting. Several

other possibilities exist, but only a few are of practical value. The most nagging problem in

working with duals is that which occurs near boundaries. In Fig. 3.5a, we show a centroid

dual for a mesh about a curved concave boundary. Because of the curvature, boundaries

of the dual cells lie within the body. Note that this becomes more aggravated as the cells

are refined in the normal direction. In this case, several layers of dual cells could penetrate

into the body. The use of a median dual offers relief to this problem (see Fig. 3.5b). But

because the edges of the dual are not straight, simple flux quadratures can give very poor

results. We will take up this topic in later sections.
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Figure 3.5a. Mesh (solid lines)

and Centroid Dual (dashed lines).

II
/°:

:1il

Figure 3.5b. Mesh (solid lines)

and Median Dual (dashed lines).

We now consider some of the algorithmic details of constructing upwind schemes. To

illustrate the methods, we will formulate these schemes on a control volume formed from

the median dual as shown in Fig 3.6. This figure shows the control volume of interest cj

with neighboring control volumes cl with local indexing i = 1,2, 3, ..., d(cj). In the case of

the median dual we have the added complexity of nonstraight edges which actually consist

of two straight line segments.

We begin with the first order upwind scheme using piecewise constant approxima-

tions. Stability and monotonicity of the scheme will be proven. We then consider schemes

which reconstruct piecewise linear polynomials. These schemes require slope limiting to

insure monotonicity. This can be done in several different ways. We then present the tech-

nique described in [31] for obtaining high order accuracy using an arbitrary order k-exact

reconstruction operator.

i

i-1

Figure 3.6 Typical mesh showing median control volumes with local indexing.
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Piecewise Constant (k--O) Upwind Scheme

This is the simplest approximation in which the polynomial behavior in el_ch cell, ci,

is a constant value equal to the cell average.

uk=°(z,Y) : ui for u k E cj (3.28)

The flux quadrature then simplifies to the following form:

- - 1 1

f(u+, u_, -_) = f(ui, uo, -fi_) = _(f(u0,-_i) + f(-ui, -n i) ) -- _ [f(fi, -n i)'l(ui -- Uo ) (3.29)

In this formula, -fi'i = fe_ n d l is any path connecting endpoints of the edge of the control

volume. From this we can write the entire scheme for cj.

d(ci)

-_ _oda+ E _ f(_o,-_)i+ f(_,,--_)i -_lf'(fi,-n)il(ui-uo) =0 (3.30)
i=1

It is not difficult to prove stability and monotonicity of the scheme. Recall that the

flux function was constructed such that

f(ui,--_)i - f(uo,--_)i =.f'(_,n)i(ui -uo), fi= Ouo +(1-O)ui, O C [O, 1]

This allows us to regroup terms into the following form:

d(cj )

-_0 f_j -Uo da + E f(_o, -fi')i + _1 (f,(fi,--_)i- .f'(_2,-_)i') (_i- _0)=0 (3.31)
i=1

v,d(c_)For a closed control volume we have that z__/=l f(_0,-_)i = 0. Combining the remaining

terms we obtain a final form for analysis:

d(_i )

(O--t _oda+ E f'(fi,-ff')/)-(_,-_0):0 (3.32)
i=1

First we verify the monotonicity of the scheme at steady state (_t fc _o da = 0) by solving

i=1

_o = = E aiZ/ (3.33)

for _0.

From this we see that all weights Ot i are positive and sum to unity. We can conclude

that the scheme is monotone since _0 is a positive weighted average of all neighbors. This
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implies that we have a maximum principle since _0 is bounded from above and below by

_,_a_ and _._. (_,,.,, = min(_l,_, "..,_aCc)), _-_a_ = max(_l,_2,-",_dCc)))

For explicit time stepping, a CFL-like condition is obtained for monotonicity. For Euler
0 1

explicit time stepping we have the time approximation, gi-_-2_ f_go da ,._ -o at -o

At f(fi,-n)i (u'_ - U'o) = Z ai_'_ (3.34)
= _ ,=1 ,=0

It should be clear that coefficients in (3.34) sum to unity. To demonstrate monotonicity, we

again need to show positivity of coefficients. By inspection we have that ct, > 0 V i > 0.

To guarantee monotonicity, we require that _0 > 0.

a° = 1 + A--_At (f'(_,-fi'),)- _> 0 (3.35)

Thus we obtain the CFL-like condition which insures monotonicity and stability.

Ac

At < -- (3.36)
- x_,d(c j ) --, -

z-,i=1 (f'(_, :n )i)

Note that in one dimension, this number corresponds to the conventional CFL number.

In multiple space dimensions, we find that this number is sufficient but not necessary for

stability. In practice somewhat larger timestep values may be used.

Conclusion: The upwind algorithm (£.,$9) using piecewise constant data satisfies a dis.

crete mazimum principle for general unstructured meshes.

Piecewise Linear (k=l) Upwind Schemes

The strategy here is to replace the assumption of piecewise constant data used in the

first order upwind algorithm with the more accurate piecewise linear approximation. We

will find that it is advantageous to consider these linear polynomials as being expanded
about the centroid of the cell in which case conservation of the mean comes for free. In the

case of linear reconstruction, we must take additiomd steps to insure monotonicity. The

approach we pursue is the one suggested by van Leer [25] which has a simple geometric

interpretation and extends to unstructured meshes. The only remaining piece of the puz-

zle is the flux quadrature. The flux quadrature suggested by the Galerkin discretization

turns out to behave poorly for irregular meshes. We show some results for an improved

quadrature.
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We begin by assuming a piecewise linear reconstruction polynomial in each control

volume cj expanded about some as yet unknown origin (z0,y0).

uk(z,y)j = u0 + Vu_j-(R-R0) (3.37)

We now insist that this polynomial have the correct cell average in the control volume cj.

_jAj=f_iutda=uoAj+Vu_j'_i(R-Re) da

We see that this is satisfied when u0 = _j and R0 is the cell centroid, Re. (This is true for

any gradient vector.) This has important implications. This means we can think of the

cell average as a pointwise exact value of the linear function at the centroid of the ceU. To

obtain an estimate of the reconstructed gradient of u k in cj, we exploit this fact together

with an approximate form of the exact Green-Gauss formula:

_ Vu cIa = /u n dl (3.38)

The solution gradient for the cell cj is estimated by computing the boundary integral of

(3.38) for some path Oft surrounding cj.

/.

c_ ukn cllVuck _ 1
Af_ Joa

(3.39)

Note that this formula is exact whenever the solution behaves linearly in the region ft.

This technique is used in the algorithms proposed in [30,32,33,34]. We need only to deter-

mine the path and numerical quadrature for (3.39) to describe the linear reconstruction.

The obvious path connects the centroids of all dual cells ci which share an edge with cj.

This would form a closed loop surrounding cj. We then consider the cell averages of these

neighbors as pointwise values of the solution located at the centroids. A trapezoidal inte-

gration given these pointwise values guarantees that the calculation is exact whenever the

solution varies linearly. This provides k-exactness.

When solution discontinuites and steep gradients as present, we must take steps to

prevent oscillations from developing in the numerical solution. One way to do this was

pioneered by van Leer [25] in the late 1970's. The basic idea is to take the reconstructed

piecewise polynomials and enforce strict monotonicity in the reconstruction. We use mono-

tonicity in this context to mean that the value of the reconstructed polynomial does not

exceed the minimum and maximum of neighboring cell averages. Figure 3.7a plots a linear

reconstruction of a quartic polynomial. Checking the interior cell reconstructions, we find

that new extrema have been created. When a new extremum is located, we reduce the

slope of the reconstruction until monotonicity is restored. This implies that when we are

at a minimum or maximum the slope is reduced to zero, see Fig. 3.7b.
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Figure 3.7a. Linear Reconstruction.
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Figure 3.7b. Linear Reconstruction

with monotone limiting.

The beauty of this method is that it generalizes to unstructured grids. In the case of

piecewise linear functions, we consider a "limited" foIm of the piecewise linear distribution.

uk(x,y)j = _j + ejVu¢kj , (R- R_) (3.40)

The idea is to find the largest admissible _j while invoking a monotonicity principle that

values of the linearly reconstructed function must not exceed the maximum and minimum

of neighboring centroid values (including the centroid value in c j). To do this, first compute

rain = min(uj,Uneighbors) and u_ '_ = max(_j,Unei#hbors) then require thatuj

m,,,< <_m-uj _ uj (3.41)

For linear reconstructions, extrema in u(z, y)_ occur at the vertices of the control volume

and sufficient conditions for (3.41) can be easily obtained. For each vertex of the cell

compute ui = Uk(Zi,Yi)j, i = 1,N,:,

(3.41):

m in(l,
¢_ = min(t,

1

to determine the limited value, ¢i, which satisfies

),
ui --u i

rain --_i
nj _ ),

ui --u i

if ui -_j > 0

if ui - _ < 0

if ui - _j = 0

(3.42)

with q'i = min(q_l, ¢2, ¢3,..., ¢N¢i ).

The proper choice of flux quadrature for the median dual control volume requires

careful thought. Recall that each edge of this contrc,l volume is actually composed of two

straight line segments. The finite volume interpretation of the Galerkin discretization (see

eqn. 3.8) suggests that we ignore the details of the shape of edge, i.e. compute a normal by

connecting centroid values. Furthermore, in the Gaierkin-like formulation, the solution is

stored at the vertices of the mesh and the flux through the ith edge of the control volume

is the arithmetic average of the fluxes calculated at 1,he vertices vi and vj. In the spirit of
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the present method, we would not take the average of the fluxes but rather extrapolate to

a point half way between the vertices vj and vi and take the numerical flux of these states.

This was suggested in Desideri [35]. We find that this does not always work particularly

well for distorted meshes. This is especially true when performing Euler and Navier-Stokes

equations at low Mach numbers. We prefer to split the numerical flux (3.23) into two parts:

f(u+,u_,n)= (f(u+,n)+f(u_,n))-_Jf(E*,n)'J(u+-u-)

Term 1 Term 2

(3.43)

We then compute the first term in two pieces by performing a midpoint quadrature on each

straight line segment of the control volume edge. The second term is computed only once

by extrapolating to the halfway point suggested by Desideri. This minimizes the additional

computation involved. As we will see, this is especially true for the Euler equations where

the second term in (3.43) dominates the calculation. For flows with discontinuities requiring

monotonicity enforcement, we find that we have no choice but to compute the entire flux

on each straight line segment.

't...........;...........' !_'._ ._ \ ' \ '.,",,_,., "-_: '.,i i :I .....\ r
li _ \ \ ":",,"-V>.-:',i:'__/?_
Ii _......-._."-."".._,,_..'"-__
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; i i" "'--.." ":-7.; ,'.,. '-_ _: _ r
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Figure 3.8a. One pt. quadrature formula. Figure 3.8b. Modifiedquadrature formula.

Figures 3.8a-b show pressure contours for a low Mach number calculation Moo = .3 using

identical gradient reconstructions but different quadrature formulas. Figure 3.8a uses the

formula suggested in [35] and Fig. 3.8b uses the new formula (3.43).

The combination of flux formula, reconstruction operator, and limiter function pro-

duces a scheme with excellent shock resolving characteristics. We can demonstrate this on a

scalar nonlinear hyperbolic problem suggested by Struijs, Deconinck, and Coussement[24].

The equation is a multidimensional form of Burger's equation.

=, + (=_/2)_ + u_ = 0

We solve the equation in a square region [0,1.5] x [0,1.5] with boundary conditions:

u(z,0) = 1.5-2z, z < 1, u(z,0) = -.5, z > 1, u(O,y) = 1.5, and u(1.5, y) = -.5.
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In Figs. 3.8 and 3.9 we show carpet plots and contours of the solution on regular and

irregular meshes.

Figure 3.8a. Carpet plot of Burger's equation

solution on regular mesh.

Figure 3.8b. Solution Contours.

Figure 3.9a. Carpet plot of Burger's equation

solution on irregular mesh.

Figure 3.9b. Solution Contours.

Note that the carpet plots indicate that the numerical solution on both meshes is monotone.

Even so, most people would prefer the solution on the regular mesh. This is an unavoidable

consequence of irregular meshes. The only remedy appears to be mesh adaptation. We

show similar results for the Euler equations on irregular meshes in a future section.

Arbitrary Order Reconstruction

In this section we give a brief account of the method we have developed in [31] for

arbitrary order reconstru,:tion. Upon first inspection, the use of high order reconstruction

might appear to be an expensive proposition. In our case, we can optimize the efficiency

of the reconstruction by precomputing as a one time' preprocessing step the set of weights
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Wj in each cell cj with neighbor set A/'cj such that

a(_,.) = E W(,,_,.)i_i (3.44)

where a(,_,,) are the polynomial coefficents, see eqn. 3.18. This effectively reduces the

problem of reconstruction to multiplication of predetermined weights and cell averages to

obtain polynomial coefficients.

During the preprocessing to obtain the reconstruction weights Wj we assume a co-

ordinate system with origin at the centroid of cj to minimize roundoff errors. We then

temporarily transform (rotate and scale) to another coordinate system (_, y) which is nor-

malized to the cell ej

with the matrix D chosen so that

Aj( 2) = A (y 2) = 1

AS( Y) = = 0

We then temporarily represent polynomials on ej using the polynomial basis functions

ff = [1,_,_,_2,_-yy, _2,_3, ...]. Note that polynomials in this system are easily transformed

to the standard cell-centroid basis

:E Dn-t z s+t_ m+n--s--t_-" 1,1 _-" 1,2 A'_ 2,1 2,2 Y

s+t<

Since 0 < s + t < k and 0 < m + n - s - t < k, we can reorder and rewrite in terms of the

standard and transformed basis polynomials

ff(m,,_) E ,,_o,t ,-, (3.45)"_-- t.J m.,n.F( s,t )

s+t<k

We can guarantee satisfaction of conservation of the mean by introducing into the

transformed coordinate system zero mean basis polynomials if0 in which all but the first

have zero cell average, i.e if0 = [1,_,y,_ 2 _ 1,[y,y 2 _ 1,_3 _ Aj(_3), ...]. Note that using

these polynomials requires a minor modification of (3.45) but retains the same form:

--0 --s,t
P(m,'_) = E Gin, '_P(°,t) (3.46)

s+t<k

Given this preparatory work, we are now ready to describe the formulation of the recon-

struction algorithm.
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Minimum Energy Reconstruction

We note that the set of cell neighbors )¢j must contain at least (k + 1)(k + 2)/2 cells

ej if the reconstruction operator R_ is to be k-exact. That (k + 1)(k + 2)/2 cells is not

sufficient in all situations is easily observed. If, for example, the cell-centers all lie on a

single straight line one can find a linear function u such that Aj(u) = 0 for every cell cj,

which means that reconstruction of u is impossible. In other cases a k-exact reconstruction

operator R_ may exist, but due to the geometry may be poorly conditioned.
Our approach is to work with a slightly larger support containing more than the

minimum number of cells. In this case the operator R_ is likely to be nonunique, because
various subsets would be able to support reconstruction operators of degree k. Although

all would reproduce a polynomial of degree k exactly, if we disregard roundoff, they would

differ in their treatment of non-polynomials, or of polynomials of degree higher than k.

Any k-exact reconstruction operator R_ is a weighted average of these basic ones. Our

approach is to choose the one of minimum Frobenius norm. This operator is optimal, in a

certain sense, when the function we are reconstructing is not exactly a polynomial of degree

k, but one that has been perturbed by the addition of Gaussian noise, for it minimizes the

expected deviation from the unperturbed polynomitd in a certain rather natural norm.

As we begin the formulation of the reconstruction preprocessing algorithm, the reader

is reminded that the task at hand is to calculate the weights Wj for each cell cj which

when applied via (3.44) produce piecewise polynomial approximations. We begin by first

rewriting the piecewise polynomial (3.18) for cell cj in terms of the reconstruction weights

(3.44)

uk(x'Y) = Z e(_,")_: W(m,,Oi_i (3.47a)

mTn<_k i E.A/ej

or equivalently

uk(x'Y)= Z ui Z W(,-r,,_,)iP(.,,,O (3.47b)

iE.t_cj rn+n<k

Polynomials of degree k or less are equivalently represented in the transformed coordinate

system using zero mean polynomials

= (3.48),, (m,,_)i_Cm,,O

iEJ_cj mWn(k

Using (3.46) we can relate weights in the transformed system to weights in the original

system

W(s,t) i= Z -=s,t _ ,G,_,nWi,_,,O,i (3-49/

m+n<k

We satisfy k-exactness b:¢ requiring that (3.48) is satisfied for all linear combinations of
--0 --0

p(,,o(z,y) such that s + t <_k. In particular, if uk(z,y) = P(,,O(z,y) for some s + t < k
then

--0 --0 t --0

P(s,t)(x,y)= _ P(m,n) Z IVim,.)iAi(P(s,t))

rn-_-rt<k i EJkfe t
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This is satisfied if for all s + t, m + n < k

E t F stWi..,.)+Ai( .,,))=
ie_q

Transforming basis polynomials back to the original coordinate system we have

_mnZ Z -'° '*G.,tAj(P(,,,,,)) =

iE.tq'q u+v<k

(3.50)

This can be locally rewritten in matrix form as

' ' (3.51a)WjAj = I

and transformed in terms of the standard basis weights via

Wj = GW_ (3.51b)

Note that W_ is a (k + 1)(k + 2)/2 by .hfj matrix and A_ has dimensions .hfj by (k +

1)(k + 2)/2. To solve (3.51a) in the optimum sense describe above, we perform an LjQj

decomposition of A_ where the orthogonal matrix Qj and the lower triangular matrix

Lj have been constructed using a modified Gram-Schmidt algorithm (or a sequence of

Householder reflections) see ref. [361. The weights W_ are then given by

W_ = Q_Lf _

Applying (3.49) we transform these weights to the standard centroid basis and the prepro-

cessing step is complete.

We now show a few results presented earlier in ref. [31]. The first calculation involves

the reconstruction of a sixth order polynomial with random normalized coefficients which

has been cell averaged onto a random mesh. Figures 3.10a-b show a sample mesh and the

absolute L2 error of the reconstruction for various meshes and reconstruction degree.

Figure 3.10a. Random mesh.
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Figure 3.10b. L2 error of reconstruction.
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We also have tested the reconstruction algorithm on more realistic problems. In Figs.

3.11a-c, we show a mesh and reconstructions (linear and quadratic) of a cell averaged den-

sity field corresponding to a Ringleb flow, an exact hodograph solution of the gasdynamic

equations, see [37].

Figure 3.11a. Randomized mesh for Figure 3.11b. Piecewise linear

Ringleb Flow. reconstruction of Pdngleb flow.

Figure 3.11e. Piecewise quadratic reconstruction of Ringleb flow.

The reader should note that the use of piecewisc contours gives a crude visual critique

as to how well the solution is represented by the pie,;ewise polynomials. The improvement

from linear to quadratic is dramatic in the case of Ringleb flow. In an upcoming sec-

tion, we will show actual numerical solutions compu_,ed using this reconstruction operator.

Complete details are given in ref. [31].
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3.5 Upwind Finite Volume Solvers for the Euler Equations

In this section we consider the extension of upwind schemes for scalar hyperbolic

equations discussed in section 3.4 to the Euler equations of gasdynamics. As we will see,

the changes are relatively minor modifications as most of the work has already been done

in designing the scalar scheme. We begin by writing the two-dimensional Euler Equations

in integral form. In ft we write the physical laws of conservation of mass, momentum, and

energy.

Conservation of Mass

°L /.O--t p da + p(V. n) dl = 0 (3.52)
n

Conservation of Momentum

0

-_ fnpV da + fstlpV(V'n) dl + fan
pn dl = 0 (3.53)

Conservation of Energy

O--t E da + (E + p)(V-n) dl = 0 (3.54)

In these equations p,V,p, and E are the density, velocity, pressure, and total energy of

the fluid. The system is closed by introducing a thermodynamical equation of state for a

perfect gas:
1

p = (7 - 1)(E- _p(V. V)) (3.55)

These equations can be written in a more compact vector equation:

with

U _-

O--t u da + F(u) • n dl = 0 (3.56)
fl

/( p(V. n)

F(u)-n = |pV(V. n) +pn )\ (E + p)(v. n)

The formulation for systems of equations requires two modifications. The first con-

cerns the flux function. We now need to consider a vector flux function rather than a

scalar flux function. In our applications, we choose the Roe flux [45] because of it's sim-

plicity. This flux is of exactly the same form as equation 3.23 except that quantities are

now vectors and matrices. The second modification concerns the reconstruction. We now

need to reconstruct several quantities. Although we are free to choose any complete set
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of variables that we like (primitive variables, entropy variables, etc.), we must in general

assure that the total amount of mass, momentum, and energy is conserved in each cell

during the reconstruction. In other words, we still need conservation of the mean in terms

of the conserved vaJ_ablee. For steady state applications this is not exactly true, the spa-

tial conservation is guaranteed because of the integral formulation and the final solution

is only dependent on how accurately we can reconstruct the solution, i.e. the degree of

k-exactness. In Figs. 3.12a-e we show a numerical solution for Euler flow over a NACA

0012 airfoil at transonic speeds (Moo = .80, a = 1.25 °) on a semi-random mesh using the

system extension of the schemes described in section 3.4.

Figure 3.12a. Close up of Mesh. Figure 3.12b. Mach contours.

First order upwind scheme.

/

-1.5

-1.9

,O

1.0

1.5

.............................. i .............................................

, , , d

.2 .4 .6 .8 1.0

x/c

Figure 3.12e. Mach contours.

Linear reconstruction scheme.

Figure 3.12d. Pressure coefficient
distribution on surface.

55



Note that although the mesh is very irregular, smooth parts of the flowfield yield smooth

solution contours. Also note the monotone resolution of the shock waves.

We previously mentioned the importance of using accurate flux quadrature formu-

las. In fact for k-exact reconstruction, we suggest N point Gauss quadratures with

N > (k + 1)/2. In Figs. 3.13a-b we demonstrate this importance by plotting density con-

tours for a numerical calculation of the Pdngleb flow (previously described) using quadratic

reconstruction k = 2. Our formula suggests that two point quadratures should be used in

this case. Figure 3.13a shows contours for a calculation using one point Gauss quadrature

and Fig. 3.13b shows contours for a calculation using two point quadratures. The im-

provement in Fig. 3.13b is dramatic. Increasing the number of quadrature points to three

leaves the solution unchanged.

Figure 3.13a. Density Contours.

(k=2, N=l)

Figure 3.13b. Density Contours.

(k=2, N=2)

3.6 Conclusions

The current state of technology in unstructured mesh solvers is rapidly changing. Now

that a number of spatial discretizations have been developed, it is time to focus attention

on solution strategies, i.e. efficient timestepping and iteration methods. This is probably

a more challenging problem and will no doubt require some major breakthroughs to give

unstructured grids universal appeal in the CFD community.

4.0 Mesh Transfer Algorithms

In this section we describe a particularly elegant technique for conservatively trans-

ferring cell average information from one mesh to another with high spatial accuracy. This

algorithm is particularly appropriate when used in conjunction with flow solver schemes

based on Godunov's method.
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Given a meshand solution, the task at hand is to transfer the solution information
to a new mesh. We assumea worst casesituation in which the old and new mesh (T
and T*) are not regular subsets or supersets of each other, see Fig. 4.0 for example.

Figure 4.0. Disjoint meshes (solid lines are old mesh, dashed lines are new mesh).

This situation frequently arises from moving mesh adaptations, multigrid (or multiple grid)

solvers, etc. In order that the transfer process be conservative we require that

fn u da= f_ u da
(T) (T*)

From the standpoint of the schemes described in p_:evioussections,we only require the

accurate calculationof cellaverages on T*. In the simplest approach, we would assume that

piecewise constant functions (the cell averages) are given on T. From Fig. 4.0, it should

be clear that in general each cell of the new mesh receives contributions from several cells

of the old mesh. The arrtount added to a new cell would be the area weighted average

of all contributing cells. For example, in Fig. 4.0 (onsider the two highlighted ceils, Ti

and Tj*, in the meshes T and T* respectively. The amount added to Tj* from Ti is the

piecewise constant value of the function in Ti weighted by the ratio of the shaded area

to the total area of Ti. A naive approach would be to do this on a cell by cell basis; in

each case finding the fractional areas of all contribu_,ing cells. This would be exceedingly

cumbersome. Moreover, the assumption of piecewisc constant representations on the old

mesh leads to a very inaccurate (but conservative) representation on the new mesh. If

many grid transfers are required this introduces excessive diffusion into the solution. To

obtain higher accuracy tLe reconstructed piecewise polynomials should be used. In this

case the integral average in all fractional areas mu:;t be computed. Once again we can

simplify this task tremendously by converting these ;_rea integrals to simple line integrals.

This approach is not new; the algorithm was first reported by Dukowicz [48] and refined

by Ramshaw [46,47]. The basic idea is to construct, a primitive vector function H such

that

V • H = u V u _i 79k
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where k = 0, 1 for the algorithms of Dukowicz and Ramshaw. The integral average in each

new cell c [ is the sum of the integral average of all fragments cfj in T interior to c [. These

area integrals then simplify by use of the divergence theorem:

fc i * uda= Z f¢ uda= E f_
c1_ Ec_ ti cIi Ec_ ti

cIi Ec_ cIi

V.Hda

(4.1)

In the case of linear functions u(R) = u0 + (Vu)0 • R, a simple primitive function given in

[47] is
1 1

H = _u0a + _((Vu)0- R)R (4.2)

This idea extends naturally to higher order functions. In order to carry out the line integrals

(4.1) each edge of T and T* is further subdivided into segments delimited by intersections

with edges of T* and T respectively. Each segment of T lies interior to a single cell of T*.

Likewise, each segment of T* lies interior to a single cell of T. Thus for each segment of

T (T*) we record the cell location in T* (T) which contains the segment. The transfer

process is carried out by integrating (4.1) for all segments of T and T*. Segments of T

separate two adjacent piecewise polynomials. First primitive functions are constructed

for each piecewise polynomial. Then both are integrated (with properly oriented normal)

from which the result contributes to the cell average of the single cell in T*. Segments

of T* require a single piecewise polynomial from T. After constructing the primitive and

integrating along an segment, the result contributes (positively or negatively depending

on the orientation of the normal) to the two cells of T* adjacent to the segment. Dividing

the results in each cell of T* by the cell area, the calculation is complete.
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Appendix A - Fortran Implementation

Although tree searches are inherently recursive, they can be implemented in a non-

recursive language such as FORTRAN. FORTRAN code for a split tree is listed here. The

subroutine sptree2 sets up the tree, the function clpnt2 searches through it. The non-

standard _atures "do while" and "enddo" , as well as a non-standard comment syntax,

are used for clarity and brevity. If necessary, M1 these _atures can be translated into

standard FORTRAN.

c

c This routine generates a roughly balanced, alternating

c direction, binary tree for two dimensional data in the array xy.

c The tree consists of the permutation list perm

c and the array of pointers, The pointer array is sized

c here for a worst case. It would usually be much smaller

subroutine sptree2(xy,dnpt,npt,pointer,perm)

integer levels, buckets

parameter (levels = 50, buckets = 5000)

integer dnpt, npt, pointer(buckets,7), perm(dnpt)

real*8 xy(dnpt,2)

c Local variables

real*8 sum,avg,divval

integer p,p2,save,npntr,ipntr,nodes,dir,first,last,pnode,

> childl,child2,divnode,nmin,levptr,level

nmin = 18 ! theoretically independent of npts

c first pointer

pointer(l,1) = 1 !first point in section (permuted list)

pointer(l,2) = npt !last point in section (permuted list)

pointer(I,3> = npt !number of points in section

pointer(I,4> = I !direction for next split, 1 = x, 2 = y

c initialize permutation list

do p = 1,npt

perm(p) = p

enddo

c main loop

npntr = I

ipntr = 1

levptr = I ! last bucket on this level

level = 1

do while (npntr .le. Ipntr )

nodes = pointer(npntr,3)

c don't split buckets that can easily be searched

c don't exceed the dimensions of pointer

c don't exceed the dimensions in the retrieval routine

if ((nodes .gt. nmin) .and.

> (ipntr+2 .le. buckets) .and.

> (level .lt. levels)) then
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C

C

C

c

decide whether to split in x or y

dir = pointer(npntr,4)

decide ,here to split (compute average)

first = pointer(npntr,l)

last = pointer(npntr,2)

divnode = perm(first)

divval = xy_divnode,dir)

sum = 0

do p = first,last

pnode = perm(p)

sum = sum+ xy(pnode,dir)

if (xy(pnode,dir) .It. divval) then

divval = xy(pnode,dir)

divnode = pnode

endif

enddo

avg is a rouEh approximation for the median

avg = sum/nodes

sort into two piles

p2 = first-I

do p = first,last

pnode = penn(p)

if (xy(pnode,dir) .le. avg) then

p2 = p2 +i

save = perm(p2)

perm(p2) = penn(p)

perm(p) = save

if (xy(pnode,dir) .Et. divval) then

divnode = pnode

divval = xy(pnode,dir)

endif

endif

enddo

update pointers

childl = ipntr+l

child2 = Ipntr+2

pointer(npntr,5)= childl

pointer(npntr,6)= child2

pointer(npntr,7)= divnode

pointer(child1,1) = first

pointer(child1,2) = p2

pointer(childl,3) = p2-first +I

pointer{childl,4) = 3 - dir !toggles betmeen I and 2

pointer(child2,1) = p2+I

pointer(child2,2) = last
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c

C

C

c

C

C

c

c

c

C

pointer(child2,3) = last - p2

pointer(child2,4) = 3 - dir !toggles between 1 and 2

ipntr = Ipntr+2

else

pointer(npntr,5) = 0 !signal that this block isn't split

endif

next pointer

if (npntr .eq. levptr) then

level = level + 1

levptr = Ipntr

endif

npntr = npntr+l

enddo

print *,'tree consists of ',Ipntr,' buckets',

> ' on ',level-l, ' levels'

print *,'No bucket contains more than ',nmin, ' nodes.'

return

end

Returns the index of the point closest to x,y

among those which satisfy (userfun(p) .eq. .true.)

Points farther away than sqrt(dsq) are ignored, unless

dsq is negative, in which case this test is skipped.

If no points are found, the value -i is returned.

This can happen if dist is small or userfun is restrictive

integerfunction clpnt2(xy2,xy,dnpt,userfun,dsq,pointer,perm)

integer levels, buckets

parameter (levels = 50, buckets = 5000)

integer dnpt,pointer(buckets,7),perm(dnpt),dbg

real*8 xy2(2),dsq,xy(dnpt,2)

Don't forget! Declare userfun external in calling program

logical userfun

external userfun

Local variables

real*8 xydist(levels,2,2),mindist,xnode,ynode,distsq,ave,dsq2

integer pout,level,branch(levels),point(levels,2)

integer pnum,nodes,first,last,dir,childl,child2,p

integer pnode,nearer,farther,avep

logical nopoint

pout = -1

level = 1

branch(1) = 2

point(l,2) = 1

!the node number in question (not permuted)

!avoid over running arrays by counting levels

!the whole is the second branch on level I

i which starts at pointer number I.
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C

C

C

C

C

C

nopoint = (dsq .it. O)

xydist(level,branch(level),t) = 0

xydist(level,branch(level),2) = 0

dsq2 = dsq

do while(level .ge. i)

Tree pruning occurs here

mindist = xydist(level,branch(level),l) +

xydist(level,branch(level),2)

if (mindist .it. dsq2 .or. nopoint) then

pnum = point(level,branch(level))

childl = pointer(pnum, 5)

nodes = pointer(pnum,3)

If there are no more children, search exhaustively

if (childl .eq. O)then

first = pointer(pnum, l)

last = pointer(pnum,2)

do p = first,last

compute distance

pnode = perm(p)

xnode = xy(pnode,l)

ynode = xy(pnode,2)

distsq = (xnode-xy2(1))**2 + (ynode-xy2(2))**2

compare with dsq

see if it passes userfun

if (nopoint .or. distsq .it. dsq2) then

if (userfun(pnode)) then

pout = pnode

nopoint = .false.

dsq2 = distsq

endif

endif

enddo

branch(level) = branch(level) + I

else

decide which child to try first

dir = pointer(pnum,4)

childl = pointer(pnum,5)

child2 = pointer(pnum,6)

avep = pointer(pnum,7)

ave = xy(avep,dir)

xydist(level+l,l,l) = xydist(level,branch(level),l)

xydist(level+i,1,2) = xydist(level,branch(level),2)

xydist(level+l,2,1) = xydist(level,branch(level),1)

xydist(level+i,2,2) = xydist(level,branch(level),2)

xydist(level+l,2,dir) = (xy2(dir)-ave),_2
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C

C

if (xy2(dir) .le. ave) then

nearer = childl

farther = child2

else

nearer = child2

farther = childl

endif

level = level + 1

point(level,l) = nearer

point(level,2) = farther

branch(level) = 1

endif

else

branch(level) = branch(level)+l

branch(level) = 3

endif

decide which pointer to try next

do while (branch(level) .gt. 2 ..and. level .ge. 2)

level = level -1

branch(level) = branch(level) + I

enddo

if (level .eq. i .and. branch(level) .gt. 2) level = 0

enddo

clpnt2 = pout

return

end
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